• Title/Summary/Keyword: design ground acceleration

Search Result 291, Processing Time 0.023 seconds

Experimental Study on Seismic Performance Evaluation of Lake Dike Structures under Earthquake Loading (지진하중에 의한 방수제 구조물의 내진성능 평가를 위한 실험적 연구)

  • Shin, Eun-Chul;Kang, Hyeon-Hoe;Kim, Tae-Jin;Chae, Young-Su;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.3
    • /
    • pp.53-62
    • /
    • 2011
  • This paper presents the characteristics behavior of dike structure and foundation ground through the shaking table model test. The vibration loadings of design earthquake acceleration of 0.154g was applied to this laboratory model test regarding on dike structure and foundation ground under the structure. The model was formulated with 1/100 design of representative cross section for evaluating the effectiveness of vibration. Based on the test results, we can analysis the behavior of lateral displacement and settlement characteristics of structure under the earthquake loading. The pore water pressure was also monitored in the upper, middle and lower layers of ground. Finally, the actual displacements and pore water pressure of the structure can be predicted by using the results of the laboratory shaking table test.

Seismic behavior of properly designed CBFs equipped with NiTi SMA braces

  • Qiu, Canxing;Zhang, Yichen;Qi, Jian;Li, Han
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.479-491
    • /
    • 2018
  • Shape memory alloys (SMA) exhibit superelasticity which refers to the capability of entirely recovering large deformation upon removal of applied forces and dissipating input energy during the cyclic loading reversals when the environment is above the austenite finish temperature. This property is increasingly favored by the earthquake engineering community, which is currently developing resilient structures with prompt recovery and affordable repair cost after earthquakes. Compared with the other SMAs, NiTi SMAs are widely deemed as the most promising candidate in earthquake engineering. This paper contributes to evaluate the seismic performance of properly designed concentrically braced frames (CBFs) equipped with NiTi SMA braces under earthquake ground motions corresponding to frequently-occurred, design-basis and maximum-considered earthquakes. An ad hoc seismic design approach that was previously developed for structures with idealized SMAs was introduced to size the building members, by explicitly considering the strain hardening characteristics of NiTi SMA particularly. The design procedure was conducted to compliant with a suite of ground motions associated with the hazard level of design-basis earthquake. A total of four six-story CBFs were designed by setting different ductility demands for SMA braces while designating with a same interstory drift target for the structural systems. The analytical results show that all the designed frames successfully met the prescribed seismic performance objectives, including targeted maximum interstory drift, uniform deformation demand over building height, eliminated residual deformation, controlled floor acceleration, and slight damage in the main frame. In addition, this study indicates that the strain hardening behavior does not necessarily impose undesirable impact on the global seismic performance of CBFs with SMA braces.

Determination of proper ground motion prediction equation for reasonable evaluation of the seismic reliability in the water supply systems (상수도 시스템 지진 신뢰성의 합리적 평가를 위한 적정 지반운동예측식 결정)

  • Choi, Jeongwook;Kang, Doosun;Jung, Donghwi;Lee, Chanwook;Yoo, Do Guen;Jo, Seong-Bae
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.9
    • /
    • pp.661-670
    • /
    • 2020
  • The water supply system has a wider installation range and various components of it than other infrastructure, making it difficult to secure stability against earthquakes. Therefore, it is necessary to develop methods for evaluating the seismic performance of water supply systems. Ground Motion Prediction Equation (GMPE) is used to evaluate the seismic performance (e.g, failure probability) for water supply facilities such as pump, water tank, and pipes. GMPE is calculated considering the independent variables such as the magnitude of the earthquake and the ground motion such as PGV (Peak Ground Velocity) and PGA (Peak Ground Acceleration). Since the large magnitude earthquake data has not accumulated much to date in Korea, this study tried to select a suitable GMPE for the domestic earthquake simulation by using the earthquake data measured in Korea. To this end, GMPE formula is calculated based on the existing domestic earthquake and presented the results. In the future, it is expected that the evaluation will be more appropriate if the determined GMPE is used when evaluating the seismic performance of domestic waterworks. Appropriate GMPE can be directly used to evaluate hydraulic seismic performance of water supply networks. In other words, it is possible to quantify the damage rate of a pipeline during an earthquake through linkage with the pipe failure probability model, and it is possible to derive more reasonable results when estimating the water outage or low-pressure area due to pipe damages. Finally, the quantifying result of the seismic performance can be used as a design criteria for preparing an optimal restoration plan and proactive seismic design of pipe networks to minimize the damage in the event of an earthquake.

Damping modification factor of pseudo-acceleration spectrum considering influences of magnitude, distance and site conditions

  • Haizhong Zhang;Jia Deng;Yan-Gang Zhao
    • Earthquakes and Structures
    • /
    • v.25 no.5
    • /
    • pp.325-342
    • /
    • 2023
  • The damping modification factor (DMF) is used to modify the 5%-damped response spectrum to produce spectral values that correspond to other necessary damping ratios for seismic design. The DMF has been the subject of numerous studies, and it has been discovered that seismological parameters like magnitude and distance can have an impact on it. However, DMF formulations incorporating these seismological parameters cannot be directly applied to seismic design because these parameters are not specified in the present seismic codes. The goal of this study is to develop a formulation for the DMF that can be directly applied in seismic design and that takes the effects of magnitude, distance, and site conditions into account. To achieve this goal, 16660 ground motions with magnitudes ranging from 4 to 9 and epicentral distances ranging from 10 to 200 km are used to systematically study the effects of magnitude, distance, and site conditions on the DMF. Furthermore, according to the knowledge that magnitude and distance affect the DMF primarily by changing the spectral shape, a spectral shape factor is adopted to reflect influences of magnitude and distance, and a new formulation for the DMF incorporating the spectral shape factor is developed. In comparison to the current formulations, the proposed formulation provides a more accurate prediction of the DMF and can be employed directly in seismic design.

Seismic Fragility Analysis for Probabilistic Performance Evaluation of PSC Box Girder Bridges (확률론적 내진성능평가를 위한 PSC Box 거더교의 지진취약도 해석)

  • Song, Jong-Keol;Jin, He-Shou;Lee, Tae-Hyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2A
    • /
    • pp.119-130
    • /
    • 2009
  • Seismic fragility curves of a structure represent the probability of exceeding the prescribed structural damage state for a given various levels of ground motion intensity such as peak ground acceleration (PGA), spectral acceleration ($S_a$) and spectral displacement ($S_d$). So those are very essential to evaluate the structural seismic performance and seismic risk. The purpose of this paper is to develop seismic fragility curves for PSC box girder bridges. In order to construct numerical fragility curve of bridge structure using nonlinear time history analysis, a set of ground motions corresponding to design spectrum are artificially generated. Assuming a lognormal distribution, the fragility curve is estimated by using the methodology proposed by Shinozuka et al. PGA is simple and generally used parameter in fragility curve as ground motion intensity. However, the PGA has not good relationship with the inelastic structural behavior. So, $S_a$ and $S_d$ with more direct relationship for structural damage are used in fragility analysis as more useful intensity measures instead of PGA. The numerical fragility curves based on nonlinear time history analysis are compared with those obtained from simple method suggested in HAZUS program.

A Shape of the Response Spectrum for Evaluation of the Ultimate Seismic Capacity of Structures and Equipment including High-frequency Earthquake Characteristics (구조물 및 기기의 한계성능 평가를 위한 고진동수 지진 특성을 반영한 응답스펙트럼 형상)

  • Eem, Seung-Hyun;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • In 2016, an earthquake occurred at Gyeongju, Korea. At the Wolsong site, the observed peak ground acceleration was lower than the operating basis earthquake (OBE) level of Wolsong nuclear power plant. However, the measured spectral acceleration value exceeded the spectral acceleration of the operating-basis earthquake (OBE) level in some sections of the response spectrum, resulting in a manual shutdown of the nuclear power plant. Analysis of the response spectra shape of the Gyeongju earthquake motion showed that the high-frequency components are stronger than the response spectra shape used in nuclear power plant design. Therefore, the seismic performance evaluation of structures and equipment of nuclear power plants should be made to reflect the characteristics of site-specific earthquakes. In general, the floor response spectrum shape at the installation site or the generalized response spectrum shape is used for the seismic performance evaluation of structures and equipment. In this study, a generalized response spectrum shape is proposed for seismic performance evaluation of structures and equipment for nuclear power plants. The proposed response spectrum shape reflects the characteristics of earthquake motion in Korea through earthquake hazard analysis, and it can be applied to structures and equipment at various locations.

Wind-induced responses and dynamic characteristics of a super-tall building under a typhoon event

  • Hua, X.G.;Xu, K.;Wang, Y.W.;Wen, Q.;Chen, Z.Q.
    • Smart Structures and Systems
    • /
    • v.25 no.1
    • /
    • pp.81-96
    • /
    • 2020
  • Wind measurements were made on the Canton Tower at a height of 461 m above ground during the Typhoon Vincente, the wind-induced accelerations and displacements of the tower were recorded as well. Comparisons of measured wind parameters at upper level of atmospheric boundary layer with those adopted in wind tunnel testing were presented. The measured turbulence intensity can be smaller than the design value, indicating that the wind tunnel testing may underestimate the crosswind structural responses for certain lock-in velocity range of vortex shedding. Analyses of peak factors and power spectral density for acceleration response shows that the crosswind responses are a combination of gust-induced buffeting and vortex-induced vibrations in the certain range of wind directions. The identified modal frequencies and mode shapes from acceleration data are found to be in good agreement with existing experimental results and the prediction from the finite element model. The damping ratios increase with amplitude of vibration or equivalently wind velocity which may be attributed to aerodynamic damping. In addition, the natural frequencies determined from the measured displacement are very close to those determined from the acceleration data for the first two modes. Finally, the relation between displacement responses and wind speed/direction was investigated.

Determination of taxiing resistances for transport category airplane tractive propulsion

  • Daidzic, Nihad E.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.6
    • /
    • pp.651-677
    • /
    • 2017
  • For the past ten years' efforts have been made to introduce environmentally-friendly "green" electric-taxi and maneuvering airplane systems. The stated purpose of e-taxi systems is to reduce the taxiing fuel expenses, expedite pushback procedures, reduce gate congestion, reduce ground crew involvement, and reduce noise and air pollution levels at large airports. Airplane-based autonomous traction electric motors receive power from airplane's APU(s) possibly supplemented by onboard batteries. Using additional battery energy storages ads significant inert weight. Systems utilizing nose-gear traction alone are often traction-limited posing serious dispatch problems that could disrupt airport operations. Existing APU capacities are insufficient to deliver power for tractive taxiing while also providing for power off-takes. In order to perform comparative and objective analysis of taxi tractive requirements a "standard" taxiing cycle has been proposed. An analysis of reasonably expected tractive resistances has to account for steepest taxiway and runway slopes, taxiing into strong headwind, minimum required coasting speeds, and minimum acceptable acceleration requirements due to runway incursions issues. A mathematical model of tractive resistances was developed and was tested using six different production airplanes all at the maximum taxi/ramp weights. The model estimates the tractive force, energy, average and peak power requirements. It has been estimated that required maximum net tractive force should be 10% to 15% of the taxi weight for safe and expeditious airport movements. Hence, airplanes can be dispatched to move independently if the operational tractive taxi coefficient is 0.1 or higher.

Seismic Influence on Subsea Pipeline Stresses

  • Choi, Byoung-Yeol;Lee, Sang-Gil;Kim, Jin-Kwang;Oh, Jin-Soo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-14
    • /
    • 2017
  • The safety analysis of an earthquake is carried out during the operation of a subsea pipeline and an onshore pipeline. Several cases are proposed for consideration. In the case of a buried pipeline, permanent ground deformation by the earthquake and an increase of internal pressure by the acceleration of the earthquake should be considered. In the case of a subsea pipeline, a bending moment is caused by liquefaction of the backfill material on a trenched seabed, etc., which results in a high bending moment of the buried pipeline. The bending moment causes the collapse of the subsea pipeline or a leak of crude oil or gas, which results in economic loss due to enormous environmental contamination and social economic loss owing to operation functional failure. Thus, in order to prevent economic loss and operation loss, structurally sensitive design with regard to seismic characteristics must be performed in the buried pipeline in advance, and the negative impact on the buried pipeline must be minimized by conducting a thorough analysis on the seabed and backfilling material selection. Moreover, it is proposed to consider the selection of material properties for the buried pipeline. A more economical review is also required for detailed study.

Seismic resistance of dry stone arches under in-plane seismic loading

  • Balic, Ivan;Zivaljic, Nikolina;Smoljanovic, Hrvoje;Trogrlic, Boris
    • Structural Engineering and Mechanics
    • /
    • v.58 no.2
    • /
    • pp.243-257
    • /
    • 2016
  • The aim of this study is to investigate the seismic resistance of dry stone arches under in-plane seismic loading. For that purpose, several numerical analyses were performed using the combined finite-discrete element method (FDEM). Twelve types of arches with different ratios of a rise at the mid-span to the span, different thicknesses of stone blocks and different numbers of stone blocks in the arch were subjected to an incremental dynamic analysis based on excitation from three real horizontal and vertical ground motions. The minimum value of the failure peak ground acceleration that caused the collapse of the arch was adopted as a measure of the seismic resistance. In this study, the collapse mechanisms of each type of stone arch, as well as the influence of the geometry of stone blocks and stone arches on the seismic resistance of structures were observed. The conclusions obtained on the basis of the performed numerical analyses can be used as guidelines for the design of dry stone arches.