• Title/Summary/Keyword: design ground acceleration

Search Result 291, Processing Time 0.023 seconds

Key technologies research on the response of a double-story isolated structure subjected to long-period earthquake motion

  • Liang Gao;Dewen Liu;Yuan Zhang;Yanping Zheng;Jingran Xu;Zhiang Li;Min Lei
    • Earthquakes and Structures
    • /
    • v.26 no.1
    • /
    • pp.17-30
    • /
    • 2024
  • Earthquakes can lead to substantial damage to buildings, with long-period ground motion being particularly destructive. The design of high-performance building structures has become a prominent focus of research. The double-story isolated structure is a novel type of isolated structure developed from base isolated structure. To delve deeper into the building performance of double-story isolated structures, the double-story isolated structure was constructed with the upper isolated layer located in different layers, alongside a base isolated structure for comparative analysis. Nonlinear elastoplastic analyses were conducted on these structures using different ground motion inputs, including ordinary ground motion, near-field impulsive ground motion, and far-field harmonic ground motion. The results demonstrate that the double-story isolated structure can extend the structural period further than the base isolated structure under three types of ground motions. The double-story isolated structure exhibits lower base shear, inter-story displacement, base isolated layer displacement, story shear, and maximum acceleration of the top layer, compared to the base isolated structure. In addition, the double-story isolated structure generates fewer plastic hinges in the frame, causes less damage to the core tube, and experiences smaller overturning moments, demonstrating excellent resistance to overturning and a shock-absorbing effect. As the upper isolated layer is positioned higher, the compressive stress on the isolated bearings of the upper isolated layer in the double-story isolated structure gradually decreases. Moreover, the compressive stress on the isolated bearings of the base isolated layer is lower compared to that of the base isolated structure. However, the shock-absorbing capacity of the double-story isolated structure is significantly increased when the upper isolated layer is located in the middle and lower section. Notably, in regions exposed to long-period ground motion, a double-story isolated structure can experience greater seismic response and reduced shock-absorbing capacity, which may be detrimental to the structure.

Considerations and Suggestions for Expressing of Seismic Capacity of Buildings (건축물 내진능력 표현에 관한 고찰 및 제언)

  • Lee, Cheol Ho;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.517-526
    • /
    • 2016
  • In this paper, some popular intensity measures of earthquakes including magnitude, MMI, and PGA as well as their empirical relationships are briefly reviewed since they have been widely used without prudence by mass media, the public, and even the government when asking or expressing the seismic capacity of buildings. The basic concept of current seismic design is also presented in order to facilitate relevant discussions. It is emphasized that expressing the building seismic capacity simplistically in terms of seismological quantities or terminologies like magnitude and MMI is inherently irrational, may be misleading the stakeholders, and should be avoided. Alternative expressions, more rational and consistent with current seismic design philosophy and practice, are recommended.

Analysis of Characteristics of Seismic Source and Response Spectrum of Ground Motions from Recent Earthquake near the Backryoung Island (최근 백령도해역 발생지진의 지진원 및 응답스펙트럼 특성 분석)

  • Kim, Jun-Kyoung
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.4
    • /
    • pp.274-281
    • /
    • 2011
  • We analysed ground motions form Mw 4.3 earthquake around Backryoung Island for the seismic source focal mechanism and horizontal response spectrum. Focal mechanism of the Backryoung Islands area was compared to existing principal stress orientation of the Korean Peninsula and horizontal response spectrum was also compared to those of the US NRC Regulatory Guide (1.60) and the Korean National Building Code. The ground motions of 3 stations, including vertical, radial, and tangential components for each station, were used for grid search method of moment tensor seismic source. The principal stress orientation from this study, ENE-WSW, is consistent fairly well with that of the Korean Peninsula. The horizontal response spectrum using 30 observed ground motions analysed and then were compared to both the seismic design response spectra (Reg Guide 1.60), applied to the domestic nuclear power plants, and the Korean Standard Design Response Spectrum for general structures and buildings (1997). Response spectrum of 30 horizontal ground motions were used for normalization with respect to the peak acceleration value of each ground motion. The results showed that the horizontal response spectrum revealed higher values for frequency bands above 3 Hz than Reg. Guide (1.60). The results were also compared to the Korean Standard Response Spectrum for the 3 different soil types and showed that the vertical response spectra revealed higher values for the frequency bands below 0.8 second than the Korean Standard Response Spectrum (SD soil condition). However, through the qualitative improvements and quantitative enhancement of the observed ground motions, the conservation of horizontal seismic design response spectrum should be considered more significantly for the higher frequency bands.

A Study on the Selection and Modification of Ground Motion Based on Site Response Analysis (부지응답해석에 기반한 지반운동 선정 및 보정에 관한 고찰)

  • Hwang, Jung-Hyun;Mauk, Ji-Wook;Son, Hyeon-Sil;Ock, Jong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.103-110
    • /
    • 2020
  • In the recent seismic design code KDS 41 17 00, selection and modification procedures of ground motions which are used for nonlinear dynamic analyses were adopted. However, its practical applications are still limited due to the lack of literatures. This paper introduces case studies which used site-response analyses to select and modify ground motions for nonlinear dynamic analyses. Based on the case studies, design criterion for site-response analyses were reviewed thoroughly in the viewpoint of practical applications. It was found that design requirements related with bedrock motions are too conservative that ground motions are selected and modified in the excessive manner. It is especially true for low-rise building structures with period ranges including acceleration-sensitive regions. Even though surface motions have shown appropriate responses, such building structures have to re-select and re-modify ground motions based on pre-analysis procedures rather than post-ones according to the current seismic design code. Also, it was observed that building structures with soft soils under strong ground motions need more comprehensive investigations on soil properties and efficient analysis methods in order to perform site-response analyses. This is due to the fact that lack of reliabilities on soil properties and analysis methods could result in unstable site-responses.

Seismic Performance-Based Design for Breakwater (방파제의 성능기반 내진설계법)

  • Kim, Young-Jun;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.91-101
    • /
    • 2022
  • The 1995 Kobe earthquake caused a massive damage to the Port of Kobe. Therefore, it was pointed out that it was impossible to design port structures for Level II (Mw 6.5) earthquakes with quasi-static analysis and Allowable Stress Design methods. In Japan and the United States, where earthquakes are frequent, the most advanced design standards for port facilities are introduced and applied, and the existing seismic design standards have been converted to performance-based design. Since 1999, the Korean Port Seismic Design Act has established a definition of necessary facilities and seismic grades through research on facilities that require seismic design and their seismic grades. It has also established a performance-based seismic design method based on experimental verification. In the performance-based seismic design method of the breakwater proposed in this study, the acceleration time history on the surface of the original ground was subjected to a fast Fourier transform, followed by a filter processing that corrected the frequency characteristics corresponding to the maximum allowable displacement with respect to performance level of the breakwater and the filtered spectrum. The horizontal seismic coefficient for the equivalent static analysis considering the displacement was calculated by inversely transforming (i.e., subjected to an inverse fast Fourier transform) into the acceleration time history and obtaining the maximum acceleration value. In addition, experiments and numerical analysis were performed to verify the performance-based seismic design method of breakwaters suitable for domestic earthquake levels.

Seismic Margin Assessment of Concrete Retaining Walls (콘크리트 옹벽의 지진여유도 평가)

  • Park, Duhee;Baeg, Jongmin;Park, Inn-Joon;Hwang, Kyeungmin;Jang, Jungbum
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.7
    • /
    • pp.5-10
    • /
    • 2019
  • In recent Gyeongju and Pohang earthquakes, motions that exceed the design ground motion were recorded. This has led to adjustments to the design earthquake intensity in selected design guidelines. An increment in the design intensity requires reevaluation of all associated facilities, requiring extensive time and cost. Firstly, the seismic factor of safety of built concrete retaining walls are calculated. Secondly, the seismic margin of concrete retaining walls is evaluated. The design sections of concrete walls built at power plants and available site investigation reports are utilized. Widely used pseudo-static analysis method is used to evaluate the seismic performance. It is shown that all concrete walls are safe against the adjusted design ground motion. To determine the seismic margin of concrete walls, the critical accelerations, which is defined as the acceleration that causes the seismic factor of safety to exceed the allowable value, are calculated. The critical acceleration is calculated as 0.36g~0.8g. The limit accelerations are significantly higher than the design intensity and are demonstrated to have sufficient seismic margin. Therefore, it is concluded that the concrete retaining walls do not need to be reevaluated even if the design demand is increased up to 0.3g.

Computing input energy response of MDOF systems to actual ground motions based on modal contributions

  • Ucar, Taner
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.263-273
    • /
    • 2020
  • The use of energy concepts in seismic analysis and design of structures requires the understanding of the input energy response of multi-degree-of-freedom (MDOF) systems subjected to strong ground motions. For design purposes and non-time consuming analysis, however, it would be beneficial to associate the input energy response of MDOF systems with those of single-degree-of-freedom (SDOF) systems. In this paper, the theoretical formulation of energy input to MDOF systems is developed on the basis that only a particular portion of the total mass distributed among floor levels is effective in the nth-mode response. The input energy response histories of several reinforced concrete frames subjected to a set of eleven horizontal acceleration histories selected from actual recorded events and scaled in time domain are obtained. The contribution of the fundamental mode to the total input energy response of MDOF frames is demonstrated both graphically and numerically. The input energy of the fundamental mode is found to be a good indicator of the total energy input to two-dimensional regular MDOF structures. The numerical results computed by the proposed formulation are verified with relative input energy time histories directly computed from linear time history analysis. Finally, the elastic input energies are compared with those computed from time history analysis of nonlinear MDOF systems.

Shaking Table Test of 1/3-Scale 3-Story Sam-Hwan Camus Precast Concrete Model (1/3축소 3층 삼환까뮤 P.C 모델의 진동대 실험)

  • 이한선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.140-154
    • /
    • 1992
  • The objective of the research stated here was aimed at providing the information needed to establish the Korean Seismic Design Code Recommendations and Guides for precast concrete (P.C) large panel apartment buildings. This was accomplished by investigation and analysis of the response of P.C large panel structures subjected to shaking table excitation simulating earthquake ground motion. one of the test specimens used was 1/3-scaled 3-story box P.C model provided by Sam-Hwan Camus Corporation. The 4m $\times$4m shaking table was used to simulate the earthquake ground motion. the employed input accelerogram was the one recorded as Taft N21E component and the peak ground acceleration(PGA) was scaled depending on the desired level of seismic severity and the time according to dynamic similitude rule. Based on results obtained from shaking table test of this P.C model, the following conclusions were drawn . (1) As far as test specimen is concerned, the seismic safety factors turns out to be 7~8. (2)P.C model has damping ratio of about8% which is twice larger than in-situ R.C. structure. And (3)this model has global displacement ductility ratio of 2~3 through the energy dissipation by opening and sliding of joints.

  • PDF

Minimum loading requirements for areas of low seismicity

  • Lam, Nelson T.K.;Tsang, Hing-Ho;Lumantarna, Elisa;Wilson, John L.
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.539-561
    • /
    • 2016
  • The rate of occurrence of intraplate earthquake events has been surveyed around the globe to ascertain the average level of intraplate seismic activities on land. Elastic response spectra corresponding to various levels of averaged (uniform) seismicity for a return period of 2475 years have then been derived along with modifying factors that can be used to infer ground motion and spectral response parameters for other return period values. Estimates derived from the assumption of uniform seismicity are intended to identify the minimum level of design seismic hazard in intraplate regions. The probabilistic seismic hazard assessment presented in the paper involved the use of ground motion models that have been developed for regions of different tectonic and crustal classifications. The proposed minimum earthquake loading model is illustrated by the case study of Peninsular Malaysia which has been identified with a minimum effective peak ground acceleration (EPGA) of 0.1 g for a return period of 2475 years, or 0.07 g for a notional return period of 475 years.

A Study on the Seismic Response of Arch Structures Using Artificial Earthquake Ground Motions (아치구조물의 모의지진파 입력에 따른 지진응답특성에 관한 연구)

  • Jung, Chan-Woo;Park, Sung-Moo;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.6
    • /
    • pp.59-66
    • /
    • 2008
  • Seismic safety is more important for large spatial structure such as theaters, stadiums, gymnasiums since these structure are public goods. It is, however, difficult to understand behavior taking place when large spatial structure which has variety of structural system and shape receives seismic load. On this study, the natural vibration mode of arch structure which is main structural element of the large spatial structure, is checked. And then, when the artificial earthquake ground motion is applied to arch structure, it is more affective by long period component than magnitude of design acceleration spectrum.

  • PDF