• Title/Summary/Keyword: design formulas

Search Result 520, Processing Time 0.022 seconds

The Design of Bandpass Filters with Resonators Changed Coupling Nodal Point (공진기의 결합 노드 위치가 바뀐 대역통과 여파기의 설계)

  • 성규제
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.49-53
    • /
    • 2002
  • In this thesis, approximated design formulas for bandpass filters using changed coupling nodal point resonators are derived. The formulas take into account the arbitrary coupling node of lumped and distributed resonators. The advantage of this filter is its abilities to change freely the coupling structure between two resonators. Using the design formulas two filters were designed and simulated. Their responses verified the formulas.

  • PDF

Development of Audible Noise Prediction Formulas Applied to HVAC Transmission Lines Design by Using Genetic Programming (유전프로그래밍에 의한 초고압 송전선로 환경설계용 코로나 소음 예측계산식 개발)

  • Yang, Kwang-Ho;Hwang, Gi-Hyun;Park, June-Ho;Park, Jong-Keun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.5
    • /
    • pp.234-240
    • /
    • 2001
  • Audible noise (AN) produced by corona discharges from high voltage transmission lines is one of the more important considerations in line design. Therefore, line designers must pre-determine the AN using prediction formulas. This paper presents the results of applying evolutionary computation techniques using AN data from lines throughout the world to develop new, highly accurate formulas for predicting a A-weighted AN during heavy rain and stable rain from overhead ac lines. Calculated ANs using these new formulas and existing formulas are compared with measured data.

  • PDF

The Development of Design Formulas for Pipe Loops Used in Large Vessels (I) (대형 선박의 파이프 루프 설계식 개발 (I))

  • Park, Chi-Mo;Yang, Park-Dal-Chi;Lee, Jong-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.132-137
    • /
    • 2008
  • Ship structures are subject to severe environmental loads causing appreciable hull girder bending which in turn affects the piping system attached to the main hull in the form of a displacement load. While this load may cause failure in the pipes, loops have been widely adopted as a means of preventing this failure, with the idea that they may lower the stress level in a pipe by absorbing some portion of the displacement load. But since such loops also have some negative effects, such as causing extra manufacturing cost, deteriorating the function of the pipe, and occupying extra space, the number and dimensions of the loops adopted need to be minimized. This research developed design formulas for pipe loops, modeling them as frames composed of beam elements, where not only bending but also shear deflection is taken into account. The accuracy of the proposed design formulas was verified by comparing two results respectively obtained by the proposed formulas and MSC/NASTRAN. The paper concludes with a sample example showing the efficiency of the proposed formulas.

The Development of Design Formulas for Pipe Loops Used in Large Vessels(II) (대형 선박의 파이프 루프 설계식 개발(II))

  • Park, Chi-Mo;Yang, Park-Dal-Chi;Lee, Jong-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.158-163
    • /
    • 2009
  • Many longitudinal pipes in ships are subject to considerable loads, caused by hull girder bending in the ships and/or thermal loads in some special pipes through which fluids with highly abnormal temperatures are conveyed. As these loads may cause failure in the pipes or their supporting structures, loops have been widely adopted to prevent such failure, based on the idea that they can lower the stress level in a pipe byabsorbing some portion of these loads. But as the loops also have some negative effects, such as causing extra manufacturing cost, deteriorating the function of the pipe, and occupying extra space, the number and dimensions of these loops need to be minimized. This research developed design formulas for pipe loops, modeling them as a spring element, for which the axial stiffness is calculated based on the beam theory, incorporating the flexibility effect of the straight portion of the pipe. The accuracy of the proposed design formulas was verified by comparing two results obtained from the proposed formulas and MSC/NASTRAN. This paper concludes with a sample application of the proposed formulas, showing their efficiency.

Development of Design Formulas for Pipe Loops Used in Ships Considering the Curvature of Corners (코너부 곡률을 고려한 선박용 파이프 루프 설계식 개발)

  • Park, Chi-Mo;Yang, Park-Dal-Chi
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.91-99
    • /
    • 2009
  • Many longitudinally arranged pipes in ships are subject to considerable displacement loads caused by the hull girder bending of ships and/or thermal loads in some special pipes through which fluids with highly abnormal temperatures are conveyed. As these loads may cause failure in the pipes or their supporting structures, loops have been widely adopted as a measure to prevent such failure, with the idea that they can lower the stress level in a pipe by absorbing some portion of these loads. But since such loops have some negative effects, such as causing extra manufacturing cost and occupying extra space, the number and dimensions of the loops need to be minimized. This research developed design formulas for pipe loops, modeling them as a spring element, for which the axial stiffness is calculated based on the beam theory, incorporating the effects of the curvature of loop corners and the flexibility of the straight portion of the pipe. The accuracy of the proposed design formulas was verified by comparing two results respectively obtained by the proposed formulas and MSC/NASTRAN. The paper ends with a sample application of the proposed formulas showing their efficiency.

A Design Method of Game Formulas by Analyzing the Tree Structure of The Operands (피연산자들의 트리구조 분석을 통한 게임공식 설계방법)

  • Chang, Hee-Dong
    • Journal of Korea Game Society
    • /
    • v.11 no.2
    • /
    • pp.39-44
    • /
    • 2011
  • Computer games need game formulas which express game rules by mathematical functions because the game rules are automatically processed by computers. The game formulas are usually multi-variable functions. So the design of a game formula is a complex and difficult problem because it is the same problem of the design of a multi-variable function which should satisfy the related game rules. In this paper we propose a new method which can systematically design game formulas. The purposed method is the decomposing of tree structure for a game formula by analyzing the tree structure of the operands which have single-variable functions on the lowest levels. So the design method can change the complex and difficult problem of the design of a multi-variable function to the simple and easy problem of the design of the single-variable function which should satisfy the related game rules.

Efficient Design of 2-D FIR Fan Filters Using Formulas for MaClellan Transform Parameters (새로운 맥클레란변환 계수 공식을 이용한 2차원 Fan 유한응답여파기의 효율적 설계)

  • 송영석;이용훈
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1995.06a
    • /
    • pp.155-157
    • /
    • 1995
  • New formulas for McClellan transform parameters for the design of 2-D Zero-phase FIR fan filters are optimally derived under the integral squared error(ISE) criterion. By imposing the constraint that F(0,0)=coswc, where F($.$) is the McClellan transform and w is the cutoff frequency of the 1-D prototype filter, the ISE is directly minimized without modifying it and, as a consequence, closed-form formulas for the McClellan transform parameters are obtained. It is shows that these formulas lead to a very efficient design for 2-D zero-phase FIR fan filters.

Efficient Design of 2-D FIR Fan Filters Using New Formulas for McClellan Transform Parameters

  • Song, Young-Seog;Lee, Yong-Hoon
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.1
    • /
    • pp.160-163
    • /
    • 1996
  • New formulas for McClellan transform parameters for the design of 2-D zero-phase FIR fan filters are optimally derived under the integral squared error(ISE) criterion. By imposing the constraint that F(0, 0)=\ulcorner, where F($.$) is the McClellan transform and $\omega$\ulcorner is the cutoff frequency of the 1-D prototype filter, the ISE is directly minimized without modifying it and, as a consequence, closed-form formulas for the McClellan transform parameters are obtained. It is shown that these formulas lead to a very efficient design for 2-D zero-phase FIR fan filters.

  • PDF

Review: Development of Numencal Wave Flume CABMAS-SURF (SUper Roiler Flume for Computer Aided Design of MAritime Structure)

  • Fujima, Koji
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.1-13
    • /
    • 2002
  • For design of maritime structure, it is necessary to evaluate the effect and stability of the structure against wave action. Laboratory model experiments and their empirical formulas are mainly used to estimate those at present, although empirical formulas have a problem of accuracy and hydraulic experiments of cost and duration. In addition, performance-based design, which may be popularized as a new design concept in the near future, requires much more information than that obtained by empirical formulas and laboratory tests. Thus, numerical simulation may become more important hereafter for structure design. (omitted)

  • PDF

Estimation of fundamental natural period of vibration for reinforced concrete shear walls systems

  • Shatnawi, Anis S.;Al-Beddawe, Esra'a H.;Musmar, Mazen A.
    • Earthquakes and Structures
    • /
    • v.16 no.3
    • /
    • pp.295-310
    • /
    • 2019
  • This study attempts to develop new simplified approximate formulas to predict the fundamental natural periods of vibration (T) for bearing wall systems engaged with special reinforced concrete shear walls (RCSW) under seismic loads. Commonly, seismic codes suggested empirical formulas established by regression analysis of measured T for buildings during earthquake motions. These formulas depend on structure type, building height, number, height and length of SW, and ratio of SW area to base area of structure. In this study, a parametric investigation is performed for T of 110 selected models of bearing RCSW systems with varying structural height, configuration of horizontal plans including building width, number and width of bays, presence of middle corridors and core SWs. For this purpose, a 3D non-linear response time history (TH) analysis is implemented using ETABS v16.2.1. New formulas to estimate T are anticipated and compared with those obtained from formulas of IBC 2012 and ASCE/SEI 7-10. Moreover, the study examines responses of an arbitrarily two selected test model of 60 m and 80 m in height with presence of SWs having middle corridors. It is observed that the performance of the tested buildings is different through arising of considerable errors when using codes' formulas for estimating T. Accordingly, using the present proposed formulas exhibits more reasonable and safer design compared to codes' formulas. The results showed that equitable enhancement is promising to improve T formulas approaching enhanced and accurate estimation of T with reliable analysis, design, and evaluation of bearing RCSW systems.