• Title/Summary/Keyword: design flood level

Search Result 129, Processing Time 0.031 seconds

Reconsideration of evaluating design flood level at Imjin River estuary (임진강 하류 감조구간에서 홍수위 산정 재고)

  • Park, Chang Geun;Baek, Kyong Oh
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.9
    • /
    • pp.617-625
    • /
    • 2017
  • In this study, it was examined that a methodology for evaluating the design flood level reasonably at Imjin River estuary affected by the tide periodically. First of all, the change of the flood level was observed by performing unsteady simulation which can take into account the characteristics of the tidal rivers. And the variations of the flood level was analyzed by change of the Manning's roughness coefficient which is sensitive to the water level calculation. The results were compared with the design flood level at Imjin River estuary announced in the 2011 Imjin River Basic Plan Report. For reference, the design flood level reported in 2011 has been calculated by using a section of a huge riverbed dredging section as input data. From the simulation results, it was found that the flood level evaluated by this study was able to satisfy the freeboard of the levee without the riverbed dredging when the roughness coefficient was assigned to the same value as that of the Han river estuary in the calculation of the flood level, and the unsteady flow simulation was carried out to reflect on the tidal river.

Uncertainty of Evaluating Design Flood and Mitigation Plan at Downstream of Imjin River (감조하천 홍수위 계산의 불확실성과 저감 대안 - 임진강 하류를 대상으로)

  • Baek, Kyong Oh;Kwon, Hyek Won
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.132-137
    • /
    • 2018
  • Compared with general rivers, fluctuations of the water level and the river bed are severe in the tidal river. In hydro-dynamic aspect, such fluctuation gives different river-bed data to us according to observing period. The time-dependent river-bed data and pre-estimation of the Manning's roughness coefficient which is the key factor of numerical modelling induces uncertainty of evaluating the design flood level. Thus it is necessary to pay more attention to calculate the flood level at tidal rivers than at general rivers. In this study, downstream of the Imjin River where is affected by tide of the West Sea selected as a study site. From the numerical modelling, it was shown that the unsteady simulation gave considerable mitigation of the water level from the starting point to 15 km upstream compared to the steady simulation. Either making a detention pond or optional dredging was not effective to mitigate the flood level at Gugok - Majung region where is located in the downstream of the Imjin River. Therefore, a more sophisticated approach is required to evaluate the design flood level estimation before constructive measures adopted in general rivers when establishing the flood control plan in a tidal river.

Determination of Design Flood Levels for the Tidal Reach of the Han River

  • Jun, Kyungsoo;Li, Li
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.173-173
    • /
    • 2015
  • The flood water level in tidal river is determined by the joint effects of flood discharge and tidal water levels at downstream boundary. Due to the variable tidal boundary conditions, the evaluated design water levels associated with a certain flood event can be significantly different. To avoid determining of design water levels just by a certain tidal boundary condition and remove the influence of variability in boundary condition from the evaluation of design water levels, a probabilistic approach is considered in this study. This study focuses on the development of a method to evaluate the realistic design water levels in tidal river with taking into account the combined effects of river discharge and tidal level. The flood water levels are described by the joint probability of two driving forces, river discharge and tidal water levels. The developed method is applied to determine design water levels for the tidal reach of the Han River. An unsteady flow model is used to simulate the flow in the reach. To determine design water levels associated with a certain flood event, first, possible boundary conditions are obtained by sampling starting times of tidal level time series; then for each tidal boundary condition, corresponding peak water levels along the channel are computed; and finally, design water levels are determined by computing the expectations of the peak water levels. Two types of tides which are composed by different constituents are assumed (one is composed by $M_2$, and the other one is composed by $M_2$ and $M_2$) at downstream boundary, and two flood events with different maximum flood discharges are considered in this study. It is found that (a) the computed design water levels with two assumed tides have no significant difference for a certain flood event, though variability of peak water levels due to the tidal effect is considerably different; (b) tidal effect can reach to the Jamsil submerged weir and the effect is obvious in the downstream reach of the Singok submerged weir; (c) in the tidally affected reach, the variability of peak water levels due to the tidal effect is greater if the maximum flood discharge is smaller.

  • PDF

Comparative Study of Flow Profiles & Discharge due to Rainfall Frequency Analysis (강우빈도 해석을 통한 하천 수리$\cdot$수문량 비교 연구)

  • Seo Kyu Woo;Lee In Rock;Won Chang Hee;Shim Bong Joo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1533-1537
    • /
    • 2005
  • The recent rainfall has happened to exceed the design rainfall after 1990 often, due to the characteristic of the rain to be changed. So, it is failing the ability safety of flood defense equipments to exist. This study analyzed the rainfall of Busan in 2003 since 1961 through the FARD2002(Frequency Analysis of Rainfall Duration). The result is equal to the thing which the design rainfall increased a little since 1991. The change of design rainfall created the result to be a flood discharge increase. This study investigated about the impact to influence on the river bank according to the change of flood discharge, the rainfall pattern change as well. This study used the program of HEC-RAS with HEC-HMS and calculated flood discharge with flood level of river. The result is equal to the thing which the computation became a flood level which exceed 50year(River design criteria-Korea water resources association 2002) criteria with 30year(River establishment criteria-Ministry of construction & transportation 1993), because of an area of impermeability increased of model basin.

  • PDF

Flood control analysis of the sea dike at estuary. (하구방조제의 홍수조절 해석)

  • 서승덕
    • Water for future
    • /
    • v.10 no.2
    • /
    • pp.113-124
    • /
    • 1977
  • Alone the southwesten coast of Korean peninsula, the extensive available arable acreages suited for forming are found in the development of tidal flats in the geographically curved bays with a motable tidal emplitude. It was found that the developments of these tidal flats cover an estimated area more than 276,000ha. In this paper, a flood control system by Pul's Storage Indication Method and Pul's Graphical Method at Return Periods-50 yrs, design rainfall-267mm per 48hrs and design flood-926c.m.s. and at 0.2meter control height above the High Water Ordinary Spring Tide Level (+11.0m) was studied. At the result, the flood demage in the reservoir at Return Periods-50 yrs and the tidal level at H.W.O.S.T.L. were satisfied to the below E.L. 11.20m (Flood Level in the reservoir). Well skilled flood control technique and management and control of draining sluice gate should be required for the disaster prevention from the flood and tide damage.

  • PDF

Improvement of National Risk Alarm 4-Stage Criteria for Flood Disaster (홍수재난 대응을 위한 국가위기경보 4단계 설정기준 개선)

  • Lee, Sookyong;Park, Jae-Woo;Oh, Eun-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.3
    • /
    • pp.369-377
    • /
    • 2018
  • EAP, which is operated on the frame of Risk Alarm 4-stage of National Risk Management Guideline, is a critical method in order to promptly respond to disasters. Korea Flood Control Office issues major and moderate flood alarm at each river station by respectively 50% and 70% of design flood discharge in terms of watermark or sea level, however, the criteria deciding major and moderate floods are vague for field managers to control the disaster situations. On the other hand, Japan and USA use river water level as a main criterion in order to classify the stage of flood disaster, which is higher design flood level than Korea. Thus, the authors analyzed domestic and oversea EAP guidelines and suggested improved criteria showing easy display method and raising the criteria of flood level for reflecting more effective action plans through testing a simulation training on the test-bed.

Determine the Length of the Side-Weir of Side-Weir Detention Basin Considering the Uncertainty of the Water Level in River (하천 수위 예측의 불확실성을 고려한 강변저류지 횡월류부 길이 결정 기법)

  • Kim, Seojun;Kim, Sanghyuk;Yoon, Byungman
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.8
    • /
    • pp.673-683
    • /
    • 2015
  • The existing flood protection in rivers has shown the limitation due to the urbanization around rivers and the abnormal climate. Thus, the demand for the constructions of side-weir detention basin are being increased as a part of integrated watershed flood protection plan. It is necessary to estimate the quantitative flood-control effect for including the side-weir detention basin in flood-control measures. For the determination, it is required to reduce the uncertainty of the design factors which can affect the flood-control effect of side-weir detention basin. Among the factors, however, the water level in river always contains uncertainty. Therefore, the design method considering the uncertainty is required. For the reasons, the design method considering uncertainty of the water level in river is suggested in this study with using the length of side-weir which is relatively easy-determinable by designers. Therefore, it is examined how the variation of the length of side-weir can affect the flood-control effect, using HEC-RAS, and then the method to determine the side-weir length considering the uncertainty of the water level in river through results from analyses. Since the uncertainty of the water level in river can be taken into account in the suggested design method, it is evaluated that the design method is more effective to suggest the flood-control effect of the side-weir type detention basin with higher safety side.

Numerical Analysis of Hydrograph Determination for Cohesive Soil Levee (조립토 하천제방의 수위파형결정에 관한 수치해석적 연구)

  • Kim, Jin-Man;Kim, Ji-Sung;Oh, Eun-Ho;Cho, Won-Beom
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.81-92
    • /
    • 2014
  • The integrity evaluation of river levee includes slope stability evaluation of riverside land and protected low-land, and safety of piping with respect to critical gradient and critical velocity based on related regulations, such as Design Criteria Rivers Commentary (2009), Structural Design Criteria Based Commentary (2009). The design hydro-graph is the most important design input factor for the integrity evaluation; it can be inaccurate due to the absence of its decision methods suggested by the national level. The authors in this paper evaluated numerical analytic levee integrity for piping and slope stability by changing each design hydro-graph, including rising ordinary water level, lasting flood water level, falling water level, and flood frequency for Mun-san-jae on Nak-dong River. Finally, the authors suggested that the levee integrity of piping and slope stability are very sensitive to the changes of increasing time of ordinary water level by 57 hours and lasting time of the flood water level by 53 hours, respectively, for Mun-san-jae.

Design Flood Estimation by Basin Characteristics (유역특성을 이용한 설계홍수량 추정)

  • Park, Ki-Bum;Kim, Gyo-Sik;Han, Ju-Heun;Bae, Sang-Su
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1172-1175
    • /
    • 2006
  • Generally, the estimation of design flood uses basin rainfall data, water level data, and runoff data, and so forms rainfall-runoff model. Because owing to the lack of hydrological data, the decision of representative unit hydrograph about the basin is difficult, the estimation of design flood uses topography feature data, and so presumes variables, and then applies the presumed variables to the model. In estimating design flood by using the model, it is considerably difficult to analyze how the model input variables estimated by topography factors, or the design flood data estimated previously are related to basin feature factors as the basic data, and presume design flood in the unmeasured basins or the basins where river arrangement basic plan is not established. The purpose of this study is to analyze how the design flood estimated previously by river arrangement basic plan is correlated with topography factors in presuming design flood, and so examine the presumption measures of design flood by using topography feature data and probability rainfall data.

  • PDF

Sensitivity Analysis on Flood Level Changes by Offline Storage Creation Based on Unsteady Flow Modeling (부정류 모의 기반 오프라인 저류지 조성에 따른 홍수위 변화 민감도 분석)

  • Eun-kyung Jang;Un Ji;Sanghyeok Kim;Jiwon Ryu
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.217-225
    • /
    • 2023
  • This study analyzed the effect of flood level reduction in the case of creating and operating offline storage for the Jangdong district, which can be used as a flood buffer space for the Geumgang River, through one-dimensional unsteady flow numerical simulation. In particular, the sensitivity analysis of changes in the height and width (length) of transverse weirs on flood level changes was performed to provide quantitative information necessary for flood control facility (embankment) design. As a result of analyzing the flood control effect of the offline storage based on the peak flood discharge and level, spatially, the flood control effect at the planned flood buffer space site and the downstream end was confirmed, and it was confirmed that the flood reduction effect at the downstream occurred the most. By design conditions of the transverse overflow weir, the greatest flood reduction effect was found under the condition that the overflow weir height based on the 50-year frequency flood level and the transverse overflow weir width (length) of 125 m were considered. The effect of delaying the time to reach the maximum flood due to the operation of the offline storage site was also presented based on unsteady flow modeling.