• Title/Summary/Keyword: design compressive strength

Search Result 1,227, Processing Time 0.024 seconds

A Study on the Strength Properties and Life Cycle Assessment of High Strength Concrete Using Recycled Coarse Aggregate (순환굵은골재를 활용한 콘크리트의 강도 특성 및 전과정 환경영향 평가에 관한 연구)

  • Choi, Won-Young;Lee, Sae-Hyun;Jun, Chan-Soo;Kim, Tae-Hyoung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.8-15
    • /
    • 2018
  • Waste concrete accounts for the largest portion of construction waste, and the supply of natural aggregate is unstable. Therefore, importance of using recycled aggregate is emphasized. The purpose of this study is to investigate the mechanical properties of high strength concrete according to the replacement rate of recycled coarse aggregate. For this purpose, the target design compressive strength was set to 40MPa, and the substitution rates of the recycled coarse aggregate were set to 0%, 30%, 60%, and 100%, respectively. Through experiments on the unreinforced concrete and hardened concrete, The validity of the use was confirmed. In addition, LCA method was used to evaluate the environmental impact of recycled aggregates and to compare and analyze the environmental impacts of the aggregates.

Evaluation of Local Buckling Strength of Stiffened Plates under Uni-axial Compression due to Closed-section Rib Stiffness (폐단면리브 강성에 따른 일축압축을 받는 보강판의 국부좌굴강도 평가)

  • Choi, Byung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.949-954
    • /
    • 2013
  • Generally, structural plates under axial compression should be stiffened by longitudinal stiffeners in order to enhance the buckling strength. Though U-shaped ribs would be more efficient for the stiffened plate system, there is in the absence of a proper design guides or relevant research results. Thus this study is aimed to examine the local buckling behavior of stiffened plates with U-section ribs. 3-dimensional analysis models which include 3 types of U-shaped longitudinal stiffeners were simulated by using the finite element code ABAQUS. The bifurcation analysis were conducted and then the buckling analysis results are compared with the theoretical equation values. It is found that the rotational constraint effect provided by the U-ribs should increase the local buckling strength. Some features drawn from a series of parametric study results are summarized.

Evaluation on Fire Test for the Concrete Filled Steel Tube Column -Fire Damage Evaluation on Steel Tube and Concrete after a Fire Test- (콘크리트충전 강관기둥의 내화실험에 대한 고찰 -재하가열실험후의 강관 및 콘크리트 화재손상평가를 중심으로-)

  • Park, Ki-Chang;Choi, Sung-Mo;Kim, Dong-Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.759-767
    • /
    • 2000
  • In this study, the time dependent internal stress changes of a Concrete Filled Steel Tube(CFT) column during a fire test were quantitatively analyzed. The strain ratio of a CFT column on the different loads was measured by tensile strength tests in terms of yield strength, tensile strength average extensibility and elasticity modulus. To understand the internal material properties change of concrete in CFT column damaged due to a fire, the compressive strength and elastic modulus tests were measured on a core sample from the center of the steel tube after the fire test. The elastic modulus test measured the strain from the stress. To determine the fire temperature of the test material, a differential thermal analysis was done. From the tested result, the gained data were conducted and an analysis method was suggested. The purpose of this work is to suggest a basic data for structure regulation enactments of the internal fire design of CFT.

  • PDF

The Compressive Strength of Thin-Walled Cold-Formed Steel Studs with Slits in the Web (복부에 슬릿이 있는 박판냉간성형형강 스터드의 압축강도)

  • Kwon, Young-Bong;Soe, Eung-Kyu;Lim, Duk-Man;Kim, Gap-Deuk;Kwon, In-Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.189-197
    • /
    • 2012
  • The cold-formed steel stud, which has been used as a load-bearing member of wall panels for steel houses, poses a significant problem in insulation due to heat bridging of the web. Therefore, some additional thermal insulating materials are required. In order to solve this problem, the cold-formed steel thermal stud with slits in the web was developed. However, estimating the structural strength of thermal studs is very difficult because of the arrangement of perforations. In this paper, an analytical and experimental research on thermal studs is described. Three types of studs with different length, pitch and arrangement of slits were tested to failure. A simple design approach was proposed based on the test results. The proposed method adopted the direct strength method, based on the elastic local and distortional buckling stress of plain studs with equivalent thickness in the web instead of thermal studs. The predictions using the proposed method were compared with test results for verification and the adequacy of the proposed method was confirmed.

A Study on the Ultimate Strength Behavior according to Modeling Range at the Stiffened Plate (선체보강판의 모델링범위에 따른 최종강도거동에 관한 연구)

  • Park Jo-Shin;Ko Jae-Yong
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.11a
    • /
    • pp.137-141
    • /
    • 2004
  • Ship structures are basically an assembly of plate elements and the load-carrying capacity or the ultimate strength is one of the most important criteria for safety assessment and economic design. Also, Structural elements making up ship plated structures do not work separately, resulting in high degree of redundancy and complexity, in contrast to those of steel framed structures. To enable the behavior of such structures to be analyzed, simplifications or idealizations must essentially be made considering the accuracy needed and the degree of complexity of the analysis to be used. On this study, to investigate effect of modeling range, the finite element method are used and their results are compared varying the analysis ranges. The model has been selected from bottom panels of large merchant ship structures. For FEA, three types of structural modeling are adopted in terms of the extent of the analysis. The purpose of the present study is to numerically calculate the characteristics of ultimate strength behavior according to the analysis ranges of stiffened panels subject to uniaxial compressive loads.

  • PDF

Mechanical Properties of Lightweight Foamed Concrete Using Polymer Foam Agent (고분자 기포제를 이용한 경량 기포 콘크리트의 역학적 특성 (II))

  • 박상순;송하원;변근주
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.1
    • /
    • pp.173-181
    • /
    • 1997
  • The objective of this study is to obtain the mechanical characteristics of prefoarmed lightweight foamed concrete using the polymer ham agent which has high lightness. flowability and strength. For this purpose, the prefoarmed lightweight foamed concrete which was developed to have flow value over 180mm. unit weight between 0.38t/$m^3$ and 0.64t/$m^3$, and compressive strength about 30kg/$cm^2$ was used. This paper presents extensive test data on Young's modulus. Poisson's ratio, stress-strain curve, the characteristics of strength of the foamed concrete and also presents the mechanical characteristics of the foamed concrete with different foam sizes. It is expected that this study provides an importance guide to design and manufacture lightweight foam concrete, so that it helps to expand its structural use.

Development of a New Simplified Algorithm for Residual Longitudinal Strength Prediction of Asymmetrically Damaged Ships (비대칭 손상 선박의 잔류 종강도 평가를 위한 간이 해석 알고리즘 개발)

  • Choung, Joon-Mo;Nam, Ji-Myung;Lee, Min-Seong;Jeon, Sang-Ik;Ha, Tae-Bum
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.3
    • /
    • pp.281-287
    • /
    • 2011
  • This paper explains the basic theory and a new development of for the residual strength prediction program of the asymmetrically damaged ships, being capable of searching moment-curvature relations considering neutral axis mobility. It is noted that moment plane and neutral axis plane should be separately defined for asymmetric sections. The validity of the new program is verified by comparing moment-curvature curves of 1/3 scaled frigate model where the results from new algorithm well coincide with experimental and nonlinear FEA results for intact condition and with nonlinear FEA results for damaged condition. Applicability of new algorithm is also verified by applying VLCC model to the newly developed program. It is proved that reduction of residual strengths is visually presented using the new algorithm when damage specifications of ABS, DNV and IMO are applied. It is concluded that the new algorithm shows very good performance to produce moment-curvature relations with neutral axis mobility on the asymmetrically damaged ships. It is expected that the new program based on the developed algorithm can largely reduce design period of FE modeling and increase user conveniences.

Performance Improvement of High Performance Shrinkage Reducing Agent using Early Strength Improving Agent (조기강도 개선제를 활용한 고성능 수축저감제의 성능 개선)

  • Park, Jong-Pil;Jung, Yong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.296-302
    • /
    • 2016
  • Studies aimed at reducing the occurrence of cracks by the shrinkage of concrete are in demand because the repair and reinforcement for cracks caused by declining concrete durability costs the user to maintain the concrete structure. In particular, in underground power facilities for power transmission, the cost is a heavy burden to repair and reinforce. For this reason, underground power facilities demanded effective methods for crack reduction at the engineering design step. This study, as a part of the development of shrinkage reducing agent for low shrinkage concrete on underground power facilities, investigated TEA to complement the shrinkage reducing agent to improve the early strength of concrete. In the case of TEA 3% as a shrinkage reducing agent, the early strength was improved significantly, and the shrinkage reducing effect was excellent. In addition, TEA 3.0 % and the shrinkage reducing agent 2.0 % showed excellent shrinkage property and compressive strength. On the other hand, more study of shrinkage reducing materials, including performance reviews on the shrinkage reducing materials with variable factors and type of materials, will be needed to generalize these results.

Flexural Behavior of Concrete Beams Reinforced with GFRP Bars (GFRP 보강근을 사용한 콘크리트 보의 휨파괴 거동)

  • Eo, Seok-Hong;Ha, Sang-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.5318-5326
    • /
    • 2014
  • This paper presents the results of flexural test of concrete beams reinforced with GFRP and conventional steel reinforcement for comparison. The beams were tested under a static load to examine the effects of the reinforcement ratio and compressive strength of concrete on cracking, deflection, ultimate capacity, and modes of failure. The test results showed that the ultimate capacity of the GFRP-reinforced beams increased with increasing reinforcement ratio and concrete strength, showing a 41.3~51.6% increase compared to steel reinforced beams. The deflections at maximum loads of the GFRP reinforced beams were 4.1~6.3 times higher that of steel reinforced beams. The measured deflections of GFRP reinforced beams decreased approximately 31% compared to the theoretical predictions because the theoretical flexural stiffness was underestimated at the maximum loads. For the GFRP-reinforced beams, the ACI code 440 design method resulted in conservative flexural strength estimates.

Evaluation of Flexural Behavior of Masonry Members Reinforced with Engineered Cementitious Composite (고인성 복합체로 보강한 조적부재의 휨 거동 평가)

  • Yang, Seung-Hyeon;Kim, Sun-Woong;Kim, Jae-Hwan;Kang, Suk-Pyo;Hong, Seong-Uk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.37-45
    • /
    • 2021
  • This paper is a basic study to evaluate the possibility of earthquake-resistant reinforcement by reinforcing engineered cementitious composite in masonry members. In order to examine the performance according to the fiber mixing rate of the engineered cementitious composite, a test specimen was prepared according to the formulation design, and flow ability, compressive strength, flexural strength, length change rate, and direct tensile strain were measured. In addition, non-reinforced masonry members, masonry members reinforced with engineered cementitious composite, and masonry members in which glass fibers and wire mesh were separately reinforced with engineered cementitious composites were manufactured, and flexural strength and maximum displacement were measured. All specimens reinforced with engineered cementitious composite showed more than 16 times the effect of maximal strength compared to that of no reinforcement, and as a result of examining the crack shape, the energy dissipation ability was excellent, confirming the possibility of seismic reinforcement.