• 제목/요약/키워드: design compressive strength

검색결과 1,220건 처리시간 0.235초

복합열화 환경을 받는 콘크리트 시설물을 위한 보수용 폴리머 시멘트 복합체의 내구성능 향상에 관한 연구 (Enhanced Durability Performance of Polymer Modified Cement Composites for Concrete Repair Under Combined Aging Conditions)

  • 원종필;박찬기
    • 한국농공학회논문집
    • /
    • 제47권6호
    • /
    • pp.27-34
    • /
    • 2005
  • The purpose of this study is to improve the durability performance of polymer modified cement composites for repair of concrete under combined aging conditions. The experimental procedure was divided into three parts. First, the replacement level of mineral admixtures in polymer modified cement composites were determined in an experimental study based on a Box Behnken design. Second, the flow value, compressive strength and chloride permeability test of sixteen types of mixtures were conducted. Test results show that the polymer modified cement composites were effected on the improvement of the compressive strength and permeability performance. Third, the effects on the replacement level of silica fume mixture was evaluated by the compressive strength, chloride permeability, chemical resistance and repeated freezing and thawing cycles test. They demonstrated that the polymer modified cement composites using mixture of silica fume, fly ash, and blast furnace slag improved the durability performance.

콘크리트 스트럿의 유효강도가 콘크리트 부재의 설계에 미치는 영향 (Effect of Effective Compressive Strength of Concrete Strut on Structural Concrete Design)

  • 윤영묵;석철호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.241-246
    • /
    • 2000
  • In the strut-tie model design of structural concrete, the importance of the effective strength of concrete strut has been overlooked by many practitioners. The authors believe that the effective strength of concrete strut is an important factor not only in determining steel tie forces but also in verifying the nodal zone strength and geometric compatibility condition of a selected strut-tie model. This study evaluate the effect of the effective strength of concrete strut on structural concrete design by applying the different effective strut strengths to the strut-tie model design of a post-tensioned anchorage zone and a continuous concrete deep beam.

  • PDF

폴리프로필렌 섬유보강 EVA 콘크리트의 휨 성능 (Flexural Performance of Polypropylene Fiber Reinforced EVA Concrete)

  • 성찬용;남기성
    • 한국농공학회논문집
    • /
    • 제58권2호
    • /
    • pp.83-90
    • /
    • 2016
  • This study was performed to evaluate the effective analysis of flexural performance for polypropylene fiber (PF) reinforced EVA concrete that can be used in marine bridge, tunnel and agricultural structures under flexural load. The control design was applied in ready mixed concrete using 10 % fly ash of total binder weight used in batch plant. On the basis of the control mix design, there was designed mix types that contained PF ranged from 0 % to 0.5 % by volume ratio into two mix types of using 0 % and 5.0 % EVA contents of total binder weight. Before evaluating the flexural performance, we tested compressive strength and flexural strength to evaluate whether polypropylene fiber reinforced concrete could be used or not in site. The method of flexural performance evaluation was applied by ASTM C 1609. These results showed the maximum compressive strength and flexural strength was measured at each E5P1 and E5P2. Concrete reinforced with PF exhibited deflection-softening behavior. In the concrete reinforced with 0.4 % PF contents and containing 5.0 % EVA, the flexural performance was the best.

종방향으로 보강된 팔각단면 쉘기둥의 축방향 압축강도 평가 (Compressive Strength Evaluation of Longitudinally Stiffened Octangular-Section Modular Shell Towers)

  • 최병호;김정원
    • 한국산학기술학회논문지
    • /
    • 제17권1호
    • /
    • pp.135-140
    • /
    • 2016
  • 본 논문은 팔각단면 모듈러 타워의 공칭압축강도의 산정에 관한 것이다. 종방향으로 보강된 팔각단면 타워모듈의 압축강도 성능을 3차원 유한요소해석으로 평가하고, 유로코드를 응용해서 산정한 공칭강도와의 비교 분석을 통해 적정 내하력 산정방식에 대해 검토하였다. 수치해석적으로 평가된 압축강도는 공칭압축강도에 비해 상당히 높게 나타나고 있으므로, 해당 범위의 팔각단면 타워모듈에 대한 적용성을 보여주나 다소 과도하게 보수적인 면에 대해서는 후속 연구를 통해 보완될 필요성이 있다.

스트럿-타이 모델에 의한 콘크리트 T형 교각 코핑부의 설계 (Design of RC T-type Pier Coping Using Strut-and-Tie Model)

  • 정광회;심별;송하원;변근주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.617-622
    • /
    • 2000
  • In this study, effective compressive strength and nodal zone of Strut-and-Tie Model are studied to propose a new design method for RC T-type pier coping for prevention of sudden brittle failure. The coping which transmits loads of bridge to pier should be properly designed to retain ductile behavior. In order to carry out this proper design using STM, tie must yield before concrete fails, and a stress at strut should not exceed a certain effective stress. Therefore, reasonable determination of the effective compressive strength of strut by considering stress states at the nodal zone exactly is very important. Since conventional STM is applied under assumption that all nodes are under hydrostatic stress state, actual non-hydrostatic stress state in nodal zone caused by geometrical characteristics, loading conditions, support conditions of structures can not be considered properly. In order to apply STM for design of RC T-type pier coping, the non-hydrostatic stress state of nodal zone is considered and effective compressive strength is proposed. Then, a new design method of RC T-type pier coping which applies the principle of superposition to obtain optimum ductile behavior is rationally designed.

  • PDF

습윤갯벌 치환율 변화에 따른 시멘트 모르타르의 물리적 특성에 관한 연구 (A study on physical characteristics of cement mortar according to change of moist mud flat replacement ratio)

  • Yang, Seonghwan;Kang, Yunyoung;Lee, Heungyeol
    • 한국재난정보학회 논문집
    • /
    • 제13권3호
    • /
    • pp.348-357
    • /
    • 2017
  • 본 연구에서는 생갯벌을 잔골재 대신 치환한 모르타르의 물리적 특성에 대한 실험을 진행하여 벽돌로써의 활용 가능성을 분석하였다. 플로우 측정결과 시멘트와 잔골재의 배합비가 높을수록 플로우 값이 증가하였으며, 생갯벌의 치환율이 감소할수록 플로우값이 감소하는 것으로 나타났다. 염화물 함유량 측정결과 생갯벌의 치환율이 감소할수록 염화물 함유량 또한 감소하는 것으로 나타났다. 압축강도 측정결과, 대부분의 배합비에서 생갯벌의 치환율이 감소할수록 압축강도는 반비례하여 증가하는 것으로 나타났다. 인장강도 측정결과, 압축강도와 비슷한 경향을 나타냈다. 그리고 생갯벌 치환율이 감소할수록 강도가 증가하는 것으로 나타났다.

혼화제를 사용한 공동주택 바닥마감 모르타르의 균열저감에 관한 연구 (A Study on the Crack Prevention of the Floor Surface Finishing Mortar adding Chemical Admixtures in Apartment Houses)

  • 이동운
    • 한국산학기술학회논문지
    • /
    • 제16권2호
    • /
    • pp.1541-1548
    • /
    • 2015
  • 본 연구에서는 공동주택 바닥미장 모르타르의 균열을 저감하기 위하여 균열 방지제, 고성능 감수제, 수지 등의 재료혼입에 따른 균열촉진실험을 실시하였다. 그 결과 고성능 감수제와 수지를 혼입한 시편이 균열방지제를 사용한 시편보다 균열수와 압축강도에서 더 우수한 결과를 나타내었다. 그리고 가장 높은 압축강도를 나타낸 시편이 상대적으로 매우 적은 균열을 나타냈으며, 가장 낮은 압축강도를 나타낸 시편에서 많은 균열을 관찰할 수 있었다. 그러므로 압축강도가 우수한 시편이 균열 저항성도 우수한 것으로 나타나 압축강도와 균열저항성은 비례하는 것으로 측정되었다. 모의부재 실험을 바탕으로 실제 아파트 현장에 적용된 배합 3의 장기 모니터링 결과, 장기 재령에서 균열발생이 전혀 관찰되지 않았다.

Prediction of compressive strength of sustainable concrete using machine learning tools

  • Lokesh Choudhary;Vaishali Sahu;Archanaa Dongre;Aman Garg
    • Computers and Concrete
    • /
    • 제33권2호
    • /
    • pp.137-145
    • /
    • 2024
  • The technique of experimentally determining concrete's compressive strength for a given mix design is time-consuming and difficult. The goal of the current work is to propose a best working predictive model based on different machine learning algorithms such as Gradient Boosting Machine (GBM), Stacked Ensemble (SE), Distributed Random Forest (DRF), Extremely Randomized Trees (XRT), Generalized Linear Model (GLM), and Deep Learning (DL) that can forecast the compressive strength of ternary geopolymer concrete mix without carrying out any experimental procedure. A geopolymer mix uses supplementary cementitious materials obtained as industrial by-products instead of cement. The input variables used for assessing the best machine learning algorithm not only include individual ingredient quantities, but molarity of the alkali activator and age of testing as well. Myriad statistical parameters used to measure the effectiveness of the models in forecasting the compressive strength of ternary geopolymer concrete mix, it has been found that GBM performs better than all other algorithms. A sensitivity analysis carried out towards the end of the study suggests that GBM model predicts results close to the experimental conditions with an accuracy between 95.6 % to 98.2 % for testing and training datasets.

On the Ductility of High-Strength Concrete Beams

  • Jang, Il-Young;Park, Hoon-Gyu;Kim, Sung-Soo;Kim, Jong-Hoe;Kim, Yong-Gon
    • International Journal of Concrete Structures and Materials
    • /
    • 제2권2호
    • /
    • pp.115-122
    • /
    • 2008
  • Ductility is important in the design of reinforced concrete structures. In seismic design of reinforced concrete members, it is necessary to allow for relatively large ductility so that the seismic energy is absorbed to avoid shear failure or significant degradation of strength even after yielding of reinforcing steels in the concrete member occurs. Therefore, prediction of the ductility should be as accurate as possible. The principal aim of this paper is to present the basic data for the ductility evaluation of reinforced high-strength concrete beams. Accordingly, 23 flexural tests were conducted on full-scale structural concrete beam specimens having concrete compressive strength of 40, 60, and 70MPa. The test results were then reviewed in terms of flexural capacity and ductility. The effect of concrete compressive strength, web reinforcement ratio, tension steel ratio, and shear span to beam depth ratio on ductility were investigated experimentally.

Prediction of unconfined compressive and Brazilian tensile strength of fiber reinforced cement stabilized fly ash mixes using multiple linear regression and artificial neural network

  • Chore, H.S.;Magar, R.B.
    • Advances in Computational Design
    • /
    • 제2권3호
    • /
    • pp.225-240
    • /
    • 2017
  • This paper presents the application of multiple linear regression (MLR) and artificial neural network (ANN) techniques for developing the models to predict the unconfined compressive strength (UCS) and Brazilian tensile strength (BTS) of the fiber reinforced cement stabilized fly ash mixes. UCS and BTS is a highly nonlinear function of its constituents, thereby, making its modeling and prediction a difficult task. To establish relationship between the independent and dependent variables, a computational technique like ANN is employed which provides an efficient and easy approach to model the complex and nonlinear relationship. The data generated in the laboratory through systematic experimental programme for evaluating UCS and BTS of fiber reinforced cement fly ash mixes with respect to 7, 14 and 28 days' curing is used for development of the MLR and ANN model. The data used in the models is arranged in the format of four input parameters that cover the contents of cement and fibers along with maximum dry density (MDD) and optimum moisture contents (OMC), respectively and one dependent variable as unconfined compressive as well as Brazilian tensile strength. ANN models are trained and tested for various combinations of input and output data sets. Performance of networks is checked with the statistical error criteria of correlation coefficient (R), mean square error (MSE) and mean absolute error (MAE). It is observed that the ANN model predicts both, the unconfined compressive and Brazilian tensile, strength quite well in the form of R, RMSE and MAE. This study shows that as an alternative to classical modeling techniques, ANN approach can be used accurately for predicting the unconfined compressive strength and Brazilian tensile strength of fiber reinforced cement stabilized fly ash mixes.