• Title/Summary/Keyword: design compressive strength

Search Result 1,226, Processing Time 0.026 seconds

Optimum tuned mass damper design for preventing brittle fracture of RC buildings

  • Nigdeli, Sinan Melih;Bekdas, Gebrail
    • Smart Structures and Systems
    • /
    • v.12 no.2
    • /
    • pp.137-155
    • /
    • 2013
  • Brittle fracture of structures excited by earthquakes can be prevented by adding a tuned mass damper (TMD). This TMD must be optimum and suitable to the physical conditions of the structure. Compressive strength of concrete is an important factor for brittle fracture. The application of a TMD to structures with low compressive strength of concrete may not be possible if the weight of the TMD is too much. A heavy TMD is dangerous for these structures because of insufficient axial force capacity of structure. For the preventing brittle fracture, the damping ratio of the TMD must be sufficient to reduce maximum shear forces below the values proposed in design regulations. Using the formulas for frequency and damping ratio related to a preselected mass, this objective can be only achieved by increasing the mass of the TMD. By using a metaheuristic method, the optimum parameters can be searched in a specific limit. In this study, Harmony Search (HS) is employed to find optimum TMD parameters for preventing brittle fracture by reducing shear force in additional to other time and frequency responses. The proposed method is feasible for the retrofit of weak structures with insufficient compressive strength of concrete.

Prediction of concrete strength from rock properties at the preliminary design stage

  • Karaman, Kadir;Bakhytzhan, Aknur
    • Geomechanics and Engineering
    • /
    • v.23 no.2
    • /
    • pp.115-125
    • /
    • 2020
  • This study aims to explore practical and useful equations for rapid evaluation of uniaxial compressive strength of concrete (UCS-C) during the preliminary design stage of aggregate selection. For this purpose, aggregates which were produced from eight different intact rocks were used in the production of concretes. Laboratory experiments involved the tests for uniaxial compressive strength (UCS-R), point load index (PLI-R), P wave velocity (UPV-R), apparent porosity (n-R), unit weight (UW-R) and aggregate impact value (AIV-R) of the rock samples. UCS-C, point load index (PLI-C) and P wave velocity (UPV-C) of concrete samples were also determined. Relationships between UCS-R-rock parameters and UCS-C-concrete parameters were developed by regression analyses. In the simple regression analyses, PLI-C, UPV-C, UCS-R, PLI-R, and UPV-R were found to be statistically significant independent variables to estimate the UCS-C. However, higher coefficients of determination (R2=0.97-1.0) were obtained by multiple regression analyses. The results of simple regression analysis were also compared to the limited number of previous studies. The strength conversion factor (k) values were found to be 14.3 and 14.7 for concrete and rock samples, respectively. It is concluded that the UCS-C can roughly be estimated from derived equations only for the specified rock types.

Fundamental Study on Evaluation method of Activity Factor of Fly Ash (플라이애시의 활성도지수 평가에 관한 기초적 연구)

  • Park, Sang-Joon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.5
    • /
    • pp.59-65
    • /
    • 2008
  • In the evaluation method of KS on the activity factor of fly ash, same amount of cement should be replaced with fly ash. Therefore, contradictory effects on concrete strength exist, i. e. strength decease due to low content of cement and strength increase of strength due to filling-pore-function of fly ash. European Committee for Standardization (CEN) specifies the method 1 to 4. adding fly ash without reducing the content of cement, for the evaluation method on activity factor of fly ash. This study investigates the applicability of the method 2 of CEN to mix design of concrete. The followings are derived ; There is a key ratio of f)y ash mixing which enhances the incremental ratio of mixing water to improve fluidity of mortar. The incremental ratio of mixing water is maximized about 11% ratio of fly ash mixing. Compressive strength most slightly increases at that ratio of fly ash mixing. Activity factor of fly ash increases as water-cement ratio becomes low and contents of fly ash becomes high. Moreover, quality of fly ash and condition of mix design affect the applicable amount of fly ash and available range of water-cement ratio. However, this method has some problems for practical purpose because activity factors of fly ash for some cases are over 1.0. Further research should be conducted to develop more useful method of evaluating activity factor of fly ash.

Probabilistic Strength at Serviceability Limit State for Normal and SBHS Slender Stiffened Plates Under Uniaxial Compression

  • Rahman, Mahmudur;Okui, Yoshiaki;Anwer, Muhammad Atif
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1397-1409
    • /
    • 2018
  • Stiffened plates with high slenderness parameters show large out-of-plane deflections, due to elastic buckling, which may occur before the plates reach their ultimate strength. From a serviceability point of view, restriction of out-of-plane deflections exceeding the fabrication tolerance is of primary importance. Compressive strength at the serviceability limit state (SLS) for slender stiffened plates under uniaxial stress was investigated through nonlinear elasto-plastic finite element analysis, considering both geometric and material nonlinearity. Both normal and high-performance steel were considered in the study. The SLS was defined based on a deflection limit and an elastic buckling strength. Probabilistic distributions of the SLS strengths were obtained through Monte Carlo simulations, in association with the response surface method. On the basis of the obtained statistical distributions, partial safety factors were proposed for SLS. Comparisons with the ultimate strength of different design codes e.g. Japanese Code, AASHTO, and Canadian Code indicate that AASHTO and Canadian Code provide significantly conservative design, while Japanese Code matches well with a 5% non-exceedance probability for compressive strength at SLS.

A Study on the Fire Resistance Design Guidelines for High-Strength Concrete Structures of AIK (대한건축학회의 구조내화설계 가이드라인에 관한 연구)

  • Kwon, Young-Jin;Shin, Yi-Chul;Lee, Jae-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.21-25
    • /
    • 2008
  • It is the aim of this study to investigate the fire resistance design Guidelines for high-strength concrete structure for example compressive strength more than 40Mpa. It is well know that explosive spalling due to fire attack of high strength concrete is related to concrete failure. so, the purpose of this study introduce the fire A Studty on the Fire Resistance Design Guidelines for High-Strength Concrete Structures of AIK for the response of explosive spalling of high strength concrete.

  • PDF

Verification on the Axial and Flexural Plastic Resistance Analysis of Unconfined Corrugate Steel Sheet and Concrete Composite Section (비구속 파형강판 합성단면의 압축 및 휨 소성해석방법에 관한 분석)

  • Oh, Hongseob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.1-10
    • /
    • 2022
  • For the composite section of corrugated steel sheet and concrete, which is often used in soil structures, a conservative design method based on the ultimate strength state is still applied due to the difficulty of the analysis of compatibility condition. In this study, plastic analysis was performed on the flexural and axial strength of the composite section using two limit state design methods, LRFD and LSD. As a result of the analysis of the experimental results, the LRFD analysis value was interpreted as a conservative results for compressive strength, and it was analyzed that the effect of the concrete compressive strength was greater than the steel ratio of the steel plate. The flexural strength was analyzed to be in good agreement with the experimental results by the LSD analysis. From the parametric analysis on the design variables, the hogging moment, which is affected by the tensile strength of the steel plate, slightly decreased the increasing rate of the strength due to the influence of the bolts connection, but the sagging moment linearly increased according to the increment of steel reinforcement ratio.

Experimental Studies on Behaviors of T-Shaped Structural Walls with Different Concrete Compressive Strengths and Aspect Ratios (콘크리트 압축강도와 웨브길이 변화에 따른 T형 벽체의 거동에 관한 실험적 연구)

  • Yang, Ji-Soo;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.201-208
    • /
    • 2003
  • In domestic, bearing wall apartment building have not rectangular walls but irregular walls which are designed at walls of various cross-sectional shapes such as H-shaped, T-shaped, Box-shaped and L-shaped. In these irregular walls connected with rigid joint each other, one side walls of irregular walls is expected to show effective behavior for rigid-jointed the other side walls. Moreover, previous studies have focused on simplifying irregular walls into rectangular walls because of the complication in structural design and analysis. So studies for variables affecting behaviors of irregular walls, such as aspect ratios and compressive strength of concrete, are insufficient. The objective of this study is to evaluate the behaviors of T-shaped structural walls with different concrete compressive strengths and aspect ratios by experimental works. Results of this experimental study show that flange wall is contributed to increase the flexural strengths by the variation of concrete strengths and aspect ratios, and that it is needed to evaluate the effect width of flange wall for rational wall design.

Evaluation of extension in service life and layer thickness reduction of stabilized flexible pavement

  • Nagrale, Prashant P.;Patil, Atulya
    • Advances in Computational Design
    • /
    • v.3 no.2
    • /
    • pp.201-212
    • /
    • 2018
  • Decrease in availability of suitable subbase and base course materials for highway construction leads to a search for economic method of converting locally available troublesome soil to suitable one for highway construction. Present study insights on evaluation of benefits of stabilization of subgrade soils in term of extension in service life (TBR) and layer thickness reduction (LTR). Laboratory investigation consisting of Atterberg limit, Compaction, California Bearing Ratio, unconfined compressive strength and triaxial shear strength tests were carried out on two types of soil for varying percentages of stabilizers. Vertical compressive strains at the top of unstabilized and stabilized subgrade soils were found out by elastoplastic finite element analysis using commercial software ANSYS. The values of vertical compressive strains at the top of unstabilized and stabilized subgrade, were further used to estimate layer thickness reduction or extension in service life of the pavement due to stabilization. Finite element modeling of the flexible pavement layered structure provides modern technology and sophisticated characterization of materials that can be accommodated in the analysis and enhances the reliability for the prediction of pavement response for improved design methodology. If the pavement section is kept same for unstabilized and stabilized subgrade soils, pavement resting on lime, fly ash and fiber stabilized subgrade soil B will have service life 2.84, 1.84 and 1.67 times than that of unstabilized pavement respectively. The flexible pavement resting on stabilized subgrade is beneficial in reducing the construction material. Actual savings would depend on the option exercised by the designer for reducing the thickness of an individual layer.

Strength Evaluation of Complex Planetary Gear Train of Traveling Reducer for 1.7-Ton Grade Small Excavator (1.7톤급 소형 굴착기용 주행 감속기의 복합 유성기어류에 대한 강도 평가)

  • Nam, SeockJu;Bae, MyungHo;Cho, YonSang
    • Tribology and Lubricants
    • /
    • v.38 no.1
    • /
    • pp.22-26
    • /
    • 2022
  • A 1.7-ton grade small excavator is a construction equipment that can perform various functions in limited spaces where heavy equipment cannot enter easily. Owing to the recent acceleration of urbanization, it has been used increasingly in drainage and gas pipes, as well as for road repair works in urban areas. The power train of a traveling reducer for a 1.7-ton grade small excavator utilizes a complex planetary gear system. Complex planetary gears are vital to the power train of a traveling reducer as it mitigates the fatigue strength problem. In the present study, the specifications of a complex planetary gear train are calculated; furthermore, the gear bending and compressive stresses of the complex planetary gears are analyzed to achieve an optimal design of the latter in terms of cost and reliability. In this study, the actual gear bending and compressive stresses of a planetary gear system are analyzed using a self-developed gear design program based on the Lewes and Hertz equation. Subsequently, the calculated specifications of the complex planetary gears are verified by evaluating the results with the data of allowable bending and compressive stress based on curves of stress vs. number of cycles of the gears.

Monitoring the effects of silica fume, copper slag and nano-silica on the mechanical properties of polypropylene fiber-reinforced cementitious composites

  • Moosa Mazloom;Hasan Salehi;Mohammad Akbari-Jamkarani
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.2
    • /
    • pp.71-86
    • /
    • 2024
  • In this study, to reduce the amount of cement consumed in the production of cementitious composites, the effects of partial replacement of cement weight with nano-silica, silica fume, and copper slag on the mechanical properties of polypropylene fiber-reinforced cementitious composites are investigated. For this purpose, the effect of replacing cement weight by each of the aforementioned materials individually and in combination is studied. A total of 34 mix designs were prepared, and their compressive, tensile, and flexural strengths were obtained for each mix. Among the mix designs with one cement replacement material, the highest strength is related to the sample containing 2.5% nano-silica. In this mix design, the compressive, tensile, and flexural strengths improve by about 33%, 13%, and 15%, respectively, compared to the control sample. In the ones with two cement replacement materials, the highest strengths are related to the mix made with 10% silica fume along with 2% nano-silica. In this mix design, compressive, tensile, and flexural strengths increase by about 42%, 18%, and 20% compared to the control sample, respectively. Furthermore, in the mixtures containing three cement substitutes, the final optimal mix design for all three strengths has 15% silica fume, 10% copper slag, and 2% nano-silica. This mix design improves the compressive, tensile, and flexural strengths by about 57%, 23%, and 26%, respectively, compared to the control sample. Finally, two relationships have been presented that can be used to predict the values of tensile and flexural strengths of cementitious composites with very good accuracy only by determining the compressive strength of the composites.