• Title/Summary/Keyword: design bending moment

Search Result 473, Processing Time 0.034 seconds

Application of Virtual Fixed Point Theory and Discrete Analysis for Pile Bent Structures (단일 현장타설말뚝의 가상고정점 설계 및 분리해석 적용성 평가)

  • Kim, Jae-Young;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.7
    • /
    • pp.57-74
    • /
    • 2013
  • In this study, the virtual fixed point analysis and 3D full-modeling analysis for pile bent structures are conducted by considering various influencing factors and the applicability of the virtual fixed point theory is discussed. Also, a discrete analysis calculating separately both the superstructure and substructure of pile bent structures is performed on the basis of an equivalent base spring model by taking into account the major influencing parameters such as soil conditions, combined loading and pile diameter. The results show that the settlement and lateral deflection of the virtual fixed point theory are smaller than those of 3D full-modeling analysis. On the other hand, the virtual fixed point analysis overestimates the axial force and bending moment compared with 3D full-modeling analysis. It is shown that the virtual fixed point analysis cannot adequately predict the real behavior of pile bent structures. It is also found that discrete analysis gives similar results of lateral deflection and bending moment to those of unified analysis. Based on this study, it is found that discrete analysis considering column-pile interaction conditions is capable of predicting reasonably well the behavior of pile bent structures. It can be effectively used to perform a more economical design of pile bent structures.

Seismic Design of Sheet Pile Walls Used in Harbor Construction (항만공사에 이용되는 널말뚝의 내진설계)

  • Kim, Hong Taek;Bang, Yoon Kyung;Kang, In Gyu;Cho, Won Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.171-187
    • /
    • 1991
  • In the present study, an analytical solution method is proposed for the seismic design of cantilever sheet pile walls and anchored sheet pile walls used in harbor construction. Seepage pressures, together with a change in magnitudes of effective horizontal soil pressures, are included in the proposed solution method. Also, the Mononobe-Okabe analysis as well as the Westergaard and Matsuo-Ohara theory of hydrodynamic pressures is used in the proposed method. Further, the choice of values for safety factors is examined for the seismic design of anchored sheet pile walls, and the effects of various parameters(dredge line slope, differential in water levels, anchor position, and wall friction angle) on embedment depth, anchor force, and maximum bending moment are analyzed for anchored walls in dense sand deposits. In addition. the tables that could be used for preliminary seismic design of anchored walls in dense sands are presented. The proposed method deals with the sheet pile walls with free earth support.

  • PDF

Analysis on the Rigid Connections between the Large Diameter Drilled Shaft and the Pile Cap for the Sea-Crossing Bridges with Multiple Pile Foundations (다주식 기초 해상교량에서 대구경 현장타설말뚝과 파일캡의 강결합에 대한 분석)

  • Cho, Sung-Min;Park, Sang-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.343-358
    • /
    • 2008
  • Piles of a bridge pier are connected with a column through a pile cap(footing). Behavior of the pile foundation can be different according to the connection method between piles and the pile cap. This difference causes a change of the design method. Connection methods between pile heads and the pile cap are divided into two groups ; rigid connections and hinge connections. KHBDC(Korea Highway Bridge Design Code) has specified to use rigid connection method for the highway bridge. In the rigid connection method, maximum bending moment of a pile occurs at the pile head and this helps the pile to prevent the excessive displacement. Rigid methods are also good to improve the seismic performance. However some specifications prescribe that conservative results through investigations for both the fixed-head condition and the free-head condition should be reflected in the design. This statement may induce an over-estimated design for the bridge which have very good quality structures with casing covered drilled shafts and the PC-house contained pile cap. Because the assumption of free-head conditions (hinge connections) are unreal for the elevated pile cap system with multiple piles of the long span sea-crossing bridges. On the other hand, elastic displacement method to evaluate the pile reactions under the pile cap is not suitable for this type of bridges due to impractical assumptions. So, full modeling techniques which analyze the superstructure and the substructure simultaneously should be performed. Loads and stress state of the very large diameter drilled shaft and the pile cap for Incheon Bridge which will the longest bridge in Korea were investigated through the full modeling for rigid connection conditions.

  • PDF

[Retracted]Analysis of Minimum Penetrated Depth of Pile bent of IPM Bridge ([논문철회]토압분리형 일체식 교대 교량의 파일벤트에 대한 최소근입깊이 해석)

  • Kim, Hongbae;Kim, Taesu;Park, Jongseo;Han, Heuisoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.5
    • /
    • pp.45-53
    • /
    • 2017
  • IPM bridge was developed to revise the problems of IAB bridge by Nam et al, (2016). This research conducted the p-y analysis to examine the parameter traits among the protruded length (H), penetrated length (L) of pile bent and soil conditions. From the results, the maximum bending moment happened in the top segment of pile bent, because it is integrated to the upper structure. Also, the maximum shear force was shown in the boundary of the sand and weathered soil zones according to the analysis soil conditions. The maximum member force and unbraced length is converged when the ratio (L/H) of protruded length (H) and penetrated length (L) is 1.0. The larger material force is happened, if the pile bent is penetrated shallowly compared to the protruded length. The definite inflection points were shown in the horizontal displacement curve from the p-y analysis, also the smaller penetrated length made the curve grade slower.

A Study on the Whipping Phenomena Effect on the Structural Response of Large Container Ships (대형 컨테이너 선박의 구조 응답에 미치는 휘핑 영향도 분석)

  • Kim, Beom-Il;Kim, Min-Su;Seo, Sun-Kee;Park, Jae-Hong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.4
    • /
    • pp.341-349
    • /
    • 2018
  • Recently, it has been reported that the whipping response, which is the elastic phenomenon of the ship, may be one of the causes of the ship accident. Unfortunately, the commonly used methodology for evaluating the whipping effect effectively has not been developed yet. In this study, we developed a procedure to estimate the whipping effect of hull in actual design stage. Fluid-structure interaction analysis was performed for a dominant short term sea state to obtain the time series data of vertical wave bending moment including the whipping response by slamming. In order to estimate the whipping effect by using the time series, some signal processing and statistical techniques such as low pass filtering, Weibull fitting and so on, were applied. the hydro-elasticity analysis was performed on container ships of various sizes to evaluate the whipping effect. The parameters that can affect the response of the hull vibration was selected and the effect of these parameters on whipping was analyzed.

Half-Scaled Substructure Test of a Transmission Tower Using Actuators (엑츄에이터를 이용한 송전철탑의 1/2 축소부분실험)

  • Moon, Byoung-Wook;Park, Ji-Hun;Lee, Sung-Kyung;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.178-188
    • /
    • 2007
  • In this paper, a half-scaled substructure test was performed to evaluate the buckling and structural safety of an existing transmission tower subjected to wind load. A loading scheme was devised to reproduce the dead and wind loads of a prototype transmission tower, which uses a triangular jig that is mounted on the reduced model to which the similarity law of a half length was applied. As a result of the preliminary numerical analysis carried out to evaluate the stability of a specimen for the design load, it was confirmed that the calculated axial forces of tower leg members were distributed to $80{\sim}90%$ of an admissible buckling load. When the substructured transmission tower was loaded by 270% of its maximum admissible buckling load, it was failed due to the local buckling that is occurred in joints with weak constraints for out-of-plane behavior of leg members. By inspection of load-displacement curves, displacements and strains of members, it is considered that this local buckling was due to additional eccentric force by unbalanced deformation because the time that is reached to yielding stress due to the bending moment is different at each point of a same section.

  • PDF

Behavior Characteristics of FRP-Concrete Composite Beam using FRC (FRC를 적용한 FRP-콘크리트 합성보의 거동특성)

  • Cho Jeong-Rae;Cho Keunhee;Kim Byung-Suk;Chin Won Jong;Kim Sung Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.742-745
    • /
    • 2004
  • The FRP-concrete composite deck system has advantages of corrosion free and easy construction. The system is, however, comprised of two brittle materials, so that it suffers from inherent disadvantage of lack of ductility. In this study, some conceptual design is presented for preventing the brittle failure of FRP-concrete composite deck at ultimate load level. 4-point bending tests are performed for FRP-concrete composite beams using FRC(Fiber Reinforced Concrete). The specimens use the box-shape FRP member in the lower portion. Four types of concrete with different compressive strengths and ductilities including normal mortar and 3 FRCs are placed in the upper portion. Typical failure mode in the test is identified; Concrete compressive failure occurs first at the maximum moment region, and the interfacial debonding between FRP and concrete member proceeds. Finally, the tensile rupture of FRP member occurs. The specimen using FRC with the high compressive ductility of concrete fails with less brittle manner than other specimens. The reason is that the ductility from the concrete in compression prevents the sudden loss of load-carrying capacity after compressive concrete failure.

  • PDF

Analysis of Stiffness for Frustum-shaped Coil Spring (원추형 코일스프링의 강성해석)

  • Kim, Jin-Hun;Lee, Soo-Jong;Kim, Jung-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.250-255
    • /
    • 2008
  • Springs are widely utilized in machine element. To find out stiffness of frustum-shaped coil spring, the space beam theory using the finite element method is adopted in this paper. In three dimensional space, a space frame element is a straight bar of uniform cross section which is capable of resisting axial forces, bending moments about two principal axes in the plane of its cross section and twisting moment about its centroidal axis. The corresponding displacement degrees of freedom are twelve. To find out load vector of coil spring subjected to distributed compression. principle of virtual work is adapted. And this theory was programming using MATLAB software. To compare FEM using MATLAB software was applied MSC. Nastran software. The geometry model for MSC. Patran was produced by 3-D design modeling software. Finite element model was produced by MSC. Patran. Finite element was applied tetra (CTETRA) having 10 node. The analysis results of the MATLAB and MSC. Nastran are fairly well agreed with those of various experiments. Using MATLAB program proposed in this paper and MSC. Nastran, spring constants and stresses can be predicted by input of few factors.

The Structrual Behavior of Eccentrically Loaded Hybrid FRP-Concrete Composite Columns (편심재하된 하이브리드 FRP-콘크리트 합성 기둥의 구조적 특성)

  • Choi, Jin-Woo;Seo, Su-Hong;Park, Joon-Soek;Joo, Hyung-Joong;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.4
    • /
    • pp.1-8
    • /
    • 2013
  • Pile foundations constructed by the fiber reinforced polymer plastic piles have been used in coastal and oceanic regions in many countries. Generally, fiber reinforced polymer plastic piles are consisted of filament winding FRP which is used to wrap the outside of concrete pile to increase the axial load carrying capacity or pultruded FRP which is located in the core concrete to resist the bending moment arising due to eccentric loading. In this paper, the analytical procedures of hybrid concrete filled FRP tube flexural members are suggested based on the CFT design method. Moreover, the analytical results are compared with the experimental results to obtained by the previous researches. The results of comparison analyses are performed to estimate the accuracy of the analytical procedure for hybrid FRP-concrete composite compression test, members under eccentrical loading.

Experimental and analytical investigation of high-strength concrete-filled steel tube square columns subjected to flexural loading

  • Chung, Kyung-Soo;Kim, Jin-Ho;Yoo, Jung-Han
    • Steel and Composite Structures
    • /
    • v.14 no.2
    • /
    • pp.133-153
    • /
    • 2013
  • The concrete-filled steel tube (CFT) columns have several benefits of high load-bearing capacity, inherent ductility and toughness because of the confinement effect of the steel tube on concrete and the restraining effect of the concrete on local buckling of steel tube. However, the experimental research into the behavior of square CFT columns consisting of high-strength steel and high-strength concrete is limited. Six full scale CFT specimens were tested under flexural moment. The CFT columns consisted of high-strength steel tubes ($f_y$ = 325 MPa, 555 MPa, 900 MPa) and high-strength concrete ($f_{ck}$ = 80 MPa and 120 MPa). The ultimate capacity of high strength square CFT columns was compared with AISC-LRFD design code. Also, this study was focused on investigating the effect of high-strength materials on the structural behavior and the mathematical models of the steel tube and concrete. Nonlinear fiber element analyses were conducted based on the material model considering the cyclic bending behavior of high-strength CFT members. The results obtained from the numerical analyses were compared with the experimental results. It was found that the numerical analysis results agree well with the experimental results.