DOI QR코드

DOI QR Code

Analysis of Minimum Penetrated Depth of Pile bent of IPM Bridge

토압분리형 일체식 교대 교량의 파일벤트에 대한 최소근입깊이 해석

  • Kim, Hongbae (Design Value Engineering Team, Expressway Design Evaluation Division, Korea Expressway Corporation) ;
  • Kim, Taesu (Safety Laboratory, Korea Expressway Corporation Research Institute) ;
  • Park, Jongseo (Expressway Design Team, Expressway Design Division, Korea Expressway Corporation) ;
  • Han, Heuisoo (Department of Civil Engineering, Kumoh National Institute of Technology)
  • Received : 2017.03.13
  • Accepted : 2017.04.14
  • Published : 2017.05.01

Abstract

IPM bridge was developed to revise the problems of IAB bridge by Nam et al, (2016). This research conducted the p-y analysis to examine the parameter traits among the protruded length (H), penetrated length (L) of pile bent and soil conditions. From the results, the maximum bending moment happened in the top segment of pile bent, because it is integrated to the upper structure. Also, the maximum shear force was shown in the boundary of the sand and weathered soil zones according to the analysis soil conditions. The maximum member force and unbraced length is converged when the ratio (L/H) of protruded length (H) and penetrated length (L) is 1.0. The larger material force is happened, if the pile bent is penetrated shallowly compared to the protruded length. The definite inflection points were shown in the horizontal displacement curve from the p-y analysis, also the smaller penetrated length made the curve grade slower.

토압분리형 일체식 교대 교량은 일체식 교대 교량의 문제점을 개선하고자 Nam et al.(2016)에 의해 개발되었다. 본 연구에서는 IPM Bridge의 파일벤트의 돌출높이(H), 근입심도(L) 및 지반의 조건에 대한 매개변수 특성을 검토하기 위해 p-y 해석을 수행하였다. 그 결과, IPM Bridge의 파일벤트 두부는 상부구조와 일체화되어 최대 휨모멘트가 발생되었다. 해석에 사용된 지반조건에 따르면, 지중의 사질토와 풍화토의 경계면에서 최대 전단력이 발생되었다. 파일벤트의 최대 부재력과 비지지길이는 돌출높이와 근입심도의 비(L/H)가 1.0일 때 수렴되었으며, 파일벤트의 돌출높이보다 근입심도가 작을 경우에는 부재력이 과다하게 발생된다. p-y 해석 결과, 횡 방향 변위는 파일벤트의 근입깊이가 커질수록 뚜렷한 변곡점을 나타내었으며, 근입깊이가 작아질수록 완만한 곡선이 되었다.

Keywords

Acknowledgement

Supported by : 도로교통연구원

References

  1. Arsoy, S., Duncan, J. M. and Barker, R. M. (2004), "Behavior of a semiintegral bridge abutment under static and temperatureinduced cyclic loading", Journal of Bridge Engineering, Vol. 9, No. 2, pp. 193-199. https://doi.org/10.1061/(ASCE)1084-0702(2004)9:2(193)
  2. Dicleli, M. and Albhaisi, S. M. (2003), "Maximum length of integral bridges supported on steel H-piles driven in sand", Engineering structures, Vol. 25, No. 12, pp. 1491-1504. https://doi.org/10.1016/S0141-0296(03)00116-0
  3. Feldmann, M., Naumes, J., Pak, D., Veljkovic, M., Nilsson, M., Eriksen, J., Collin, P., Kerokoski, O., Petursson, H. and Verstraete, M. (2010), "Economic and durable design of composite bridges with integral abutments", European Commission Joint Research Centre, pp. 140.
  4. Jeong, S. S., Kwak, D. O., Ahn, S. Y. and Lee, J. K. (2006), A study on the lateral behavior of pile-bent structures with P-${\Delta}$ effect, Journal of the Korean Geotechnical Society, Vol. 22, No. 8, pp. 77-88.
  5. KEC (2012), "Expressway Construction Guide Specification", Korea Expressway Corperation (in Korean).
  6. KECRI (2009), "Integral Bridge design Guidelines", Korea Epressway Corperation Research Institute, pp. 1-59 (in Korean).
  7. KECRI (2016), "IPM Bridge design Guidelines", Korea Expressway Corporation Research Institute (in Korean).
  8. KGS (2009), "Structure foundation design standards specification", Korean Geotechnical Society (in Korean).
  9. KGS (2015), "Structure foundation design standards specification", Korean Geotechnical Society (in Korean).
  10. Kim, W. S. and Laman, J. A. (2013), "Integral abutment bridge behavior under uncertain thermal and time-dependent load", Structural Engineering and Mechanics, Vol. 46, No. 1, pp. 53-73. https://doi.org/10.12989/sem.2013.46.1.053
  11. Lee, S. H., Kim, S. R., Lee, J. H. and Chung, M. K. (2011), Evaluation of py curves of piles in soft deposits by 3-dimensional numerical analysis, Journal of the Korean Geotechnical Society, Vol. 27, No. 7, pp. 47-57. https://doi.org/10.7843/kgs.2011.27.7.047
  12. Lemnitzer, A., Ahlberg, E. R., Nigbor, R. L., Shamsabadi, A., Wallace, J. W. and Stewart, J. P. (2009), "Lateral performance of full-scale bridge abutment wall with granular backfill", Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 4, pp. 506-514. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:4(506)
  13. Nam, M. S., Do, J. N., Kim, T. S., Park, Y. H. and Kim, H. J. (2016), "Development of IPM Bridge", Korea Expressway Corporation Research Institute (in Korean).
  14. Korea Expressway Corporation (2016), "IPM Bridge design Guidelines", Korea Expressway Corporation Research Institute (in Korean).
  15. Olson, S. M., Holloway, K. P., Buenker, J. M., Long, J. H. and LaFave, J. M. (2013), "Thermal behavior of IDOT integral abutment bridges and proposed design modifications", FHWAICT-12-022, Illinois Center for Transportation, Illinois, pp. 1-63.
  16. Park, Y. H. and Nam, M. S. (2007), "Behavior of earth pressure and movements on integral abutments", Journal of The Korean Society of Civil Engineers, Vol. 27, No. 3C, pp. 163-173.
  17. Reese, L. C., Cox, W. R. and Koop, F. D. (1974), "Analysis of laterally loaded piles in sand", Offshore Technology in Civil Engineering Hall of Fame Papers from the Early Years, OTC 2080, pp. 95-105.