• Title/Summary/Keyword: design bending moment

Search Result 473, Processing Time 0.023 seconds

Design procedure for prestressed concrete beams

  • Colajanni, Piero;Recupero, Antonino;Spinella, Nino
    • Computers and Concrete
    • /
    • v.13 no.2
    • /
    • pp.235-253
    • /
    • 2014
  • The theoretical basis and the main results of a design procedure, which attempts to provide the optimal layout of ordinary reinforcement in prestressed concrete beams, subjected to bending moment and shear force are presented. The difficulties encountered in simulating the actual behaviour of prestressed concrete beam in presence of coupled forces bending moment - shear force are discussed; particular emphasis is put on plastic models and stress fields approaches. A unified model for reinforced and prestressed concrete beams under axial force - bending moment - shear force interaction is provided. This analytical model is validated against both experimental results collected in literature and nonlinear numerical analyses. Finally, for illustrating the applicability of the proposed procedure, an example of design for a full-scale prestressed concrete beam is shown.

Assessment the effect of pile intervals on settlement and bending moment raft analysis of piled raft foundations

  • Ghiasi, Vahed;Moradi, Mobin
    • Geomechanics and Engineering
    • /
    • v.16 no.2
    • /
    • pp.187-194
    • /
    • 2018
  • Application the pile group foundation to reduce overall settlement of the foundation and also avoid a very fruitful settlement of foundations, inconsistent was carried out. In such a case, in event that the Foundation, not as a mere pile group, which as a system consisting of a broad foundation with pile Group, economic design criteria will be provided in spite of high safety. A new approach in the design of the Foundation can be introduced as the piles are just a tool to improve the parameters of soil hardness; that it can work with detachable piles from raft. Centralized arrangement of piles as the most optimal layout of piles in reducing inconsistent settlement, which is the lowest value of resulting layout in this differential settlement. Using the combination of piles connected and disconnected to form the raft, bending moment created in the raft is reduced. It also concentrated arrangements have greatest effect in reducing amount of moment applied to the raft.

An Evaluation of Influencing Parameters on Biaxial Bending Moment Strength of Reinforced Concrete Columns (철근 콘크리트 기둥의 2축휨 강도에 영향을 미치는 변수 고찰)

  • Yoo, Suk-Hyung;Bahn, Byong-Youl;Shin, Sung-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.239-246
    • /
    • 2003
  • In the PCA Load Contour Method, the biaxial bending design coefficient of columns(${\beta}$) is based on the equivalent rectangular stress block (RSB). And coefficient of ${\beta}$ estimates the reinforcement index to be a influencing parameter on biaxial moment strength of RC columns without considering the arbitrary condition of bar arrangement. The experimental results of high strength concrete (HSC) columns subjected to combined axial load and biaxial bending moment were compared to the analysis results of RSB method. As result, the accuracy of RSB method is still acceptable for HSC columns and, as the reinforcement is placed densely in each corner of column section, the ${\beta}$ is decreased.

Development of Measurement Device for Bending Stiffness of Footwear (신발의 굽힘강성 측정 장비의 개발)

  • Lee, Jong-Nyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1078-1084
    • /
    • 2011
  • In design of sport footwear, bending stiffness of its toe part is an important factor though it can be hardly measured. This paper introduces a device for measuring the bending stiffness. The device is simply designed with aluminum frames, one AC motor, two load-cells, one encoder and control hardwares. The mechanism measuring the bending moment of a shoe is described. Then, it was used to observe how the midsole material and design of a sports shoe affect on its bending stiffness. For the experiments, various specimens prepared, where each midsole of the specimens is different in terms of material, thickness and hardness. With those specimens, experiments were performed by using the device and then the bending stiffness was computed by applying the least square curve fitting after the bending moment data were measured. The specimen with Poly-urethane(PU) midsole has the higher bending stiffness than the one with Phylon(PH) midsole, and the midsole thickness affects more on the bending stiffness than the midsole hardness. Based on those results, it can be concluded that the measurement device can provide consistent bending stiffness data to sports footwear and the bending stiffness of a footwear measured by the developed device can be used as a major parameter in the footwear design.

Isolated RC wall subjected to biaxial bending moment and axial force

  • Park, Honggun
    • Structural Engineering and Mechanics
    • /
    • v.9 no.5
    • /
    • pp.469-482
    • /
    • 2000
  • A numerical study using nonlinear finite element analysis is performed to investigate the behavior of isolated reinforced concrete walls subjected to combined axial force and in-plane and out-of-plane bending moments. For a nonlinear finite element analysis, a computer program addressing material and geometric nonlinearities was developed. Through numerical studies, the internal force distribution in the cross-section is idealized, and then a new design method, different from the existing methods based on the plane section hypothesis was developed. According to the proposed method, variations in the interaction curve of the in-plane bending moment and axial force depends on the range of the permissible axial force per unit length, that is determined by a given amount of out-of-plane bending moment. As the out-of-plane bending moment increases, the interaction curve shrinks, indicating a decrease in the ultimate strength. The proposed method is then compared with an existing method, using the plane section hypothesis. Compared with the proposed method, the existing method overestimates the ultimate strength for the walls subjected to low out-of-plane bending moments, while it underestimates the ultimate strength for walls subject to high out-of-plane bending moments. The proposed method can address the out-of-plane local behavior of the individual wall segments that may govern the ultimate strength of the entire wall.

Design of R.C.Members with General Shape Subjected to Biaxial Bending (2축휨과 축하중을 받는 임의 단면 형태의 철근 콘크리트 부재의 설계)

  • 문선미;이종권;이병해
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.139-148
    • /
    • 1993
  • A computerized numerical method is presented for the design and/or the investigation of RC members with general shape and material properties subjected to axial load and biaxial bending moment. Slenderness effects can also be considered with the use of the moment magnification factor. The method is based on the summation of stress result- ants on a small area of the cross section which enables the determination of strength interaction diagrams, load contours and moment-curvature relationships for the general section. Thus the presented program HYCOL can be used as a direct tool for design and/or investigation of RC members with general shape subjected to biaxial bending. The accuracy of program HYCOL is established by comparison with experimental results.

  • PDF

Design of Six-Axis Force/Moment Sensor for Ankle-Rehabilitation Robot (발목재활로봇을 위한 6축 힘/모멘트센서 설계)

  • Kim, Yong-Gook;Kim, Gab-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.4
    • /
    • pp.357-363
    • /
    • 2013
  • Most serious patients who have the paralysis of their ankles can't use of their feet freely. But their ankles can be recovered by an ankle bending rehabilitation exercise and a ankle rotating rehabilitation exercise. Recently, the professional rehabilitation therapeutists are much less than stroke patients in number. Therefore, the ankle-rehabilitation robot should be developed. The developed robot can be dangerous because it can't measure the applied bending force and twisting moment of the patients' ankles. In this paper, the six-axis force/moment sensor for the ankle-rehabilitation robot was specially designed the weight of foot and the applied force to foot in rehabilitation exercise. As a test results, the interference error of the six-axis force/moment sensor was less than 2.51%. It is thought that the sensor can be used to measure the bending force and twisting moment of the patients' ankles in rehabilitation exercise.

Structural performance of cold-formed steel column bases with bolted moment connections

  • Chung, K.F.;Yu, W.K.;Wang, A.J.
    • Steel and Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.325-340
    • /
    • 2005
  • This paper presents a thorough investigation into the structural performance of cold-formed steel column bases using double lipped C sections with bolted moment connections. A total of four column base tests with different connection configurations were carried out, and it was found that section failure under combined bending and shear was always critical. Moreover, the proposed column bases were demonstrated to be structurally efficient attaining moment resistances close to those of the connected sections. In order to examine the structural behaviour of the column base connections, a finite element model was established using shell and spring elements to model the sections and the bolted fastenings respectively. Both material and geometrical non-linearities were incorporated, and comparison between the test and the numerical results was presented in details. The design rules originally developed for bolted moment connections between lapped Z sections were adopted and re-formulated for the design of column base connections after careful calibration against the test data. Comparison on co-existing moments and shear forces at the critical cross-sections of the column bases was fully presented. It was shown that the proposed design and analysis method was structurally adequate to predict the failure loads under combined bending and shear for column bases with similar connection configurations.

Structural performance of cold-formed steel column bases with bolted moment connections

  • Chung, K.F.;Yu, W.K.;Wang, A.J.
    • Steel and Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.289-304
    • /
    • 2005
  • This paper presents a thorough investigation into the structural performance of cold-formed steel column bases using double lipped C sections with bolted moment connections. A total of four column base tests with different connection configurations were carried out, and it was found that section failure under combined bending and shear was always critical. Moreover, the proposed column bases were demonstrated to be structurally efficient attaining moment resistances close to those of the connected sections. In order to examine the structural behaviour of the column base connections, a finite element model was established using shell and spring elements to model the sections and the bolted fastenings respectively. Both material and geometrical non-linearities were incorporated, and comparison between the test and the numerical results was presented in details. The design rules originally developed for bolted moment connections between lapped Z sections were adopted and re-formulated for the design of column base connections after careful calibration against the test data. Comparison on co-existing moments and shear forces at the critical cross-sections of the column bases was fully presented. It was shown that the proposed design and analysis method was structurally adequate to predict the failure loads under combined bending and shear for column bases with similar connection configurations.

Bending Properties and Recommened Design Criteria for Domestic Softwood with Notch (파임을 가진 국산 침엽수재의 휨성능 및 구조설계기준에 관한 연구)

  • Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.6-12
    • /
    • 1998
  • Test results of domestic softwood lumber were presented to examine the notch effect of beams and compare to present AIJ(Architecture Institute of Japan) formula in notched wood member especially positioned in bottom side (tension side) of a beam. Notched lumber was tested under following condition : each specimen supported simply, and subjected to third-point loading at points of 1/3 of the span length. Notch was located opposite side to loading direction and notch depth were 1/6, 1/4, 1/3 of beam depth. Deflection and load were measured by digital dial guage each in 25kgf increment. Bending test results were as follows; Mpro/Mmax range (proportional and maxium bending moment ratio in notched beam) was 0.5 - 0.65. It was considered that maxium bending moment was about 1.5 times to proportional bending moment in notched beam and showed same tendency in the test result of ordinary wood specimens. AU standard formula for the tension side notch, Mmat = 0.6 ${\times}$ (Zo $\sigma$), the constant 0.6 was suitble for notch ratio(notch depth to beam depth) 1/6, but this ratio for 1/4, and 1/3 was not. So it is preferable to accept smaller value than 0.6 for notch ratio more than 1/3. These experiment results showed critical effect in tension side notched wood beam especially in greater than notch ratio 1.3 of wood beam. From the above results, it is recommened to revise design formula adoptable to domestic wood constructon member with tension side notched member.

  • PDF