• Title/Summary/Keyword: desiccation stress

Search Result 26, Processing Time 0.026 seconds

Germination Rate and Moisture Content of Eelgrass, Zostera Marina Upon Desiccation (잘피, 거머리말 종자의 건조에 따른 발아율과 함수율)

  • PARK, JUNG-IM;KIM, JONG-HYEOB;KIM, JONG-RYOL
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.3
    • /
    • pp.69-76
    • /
    • 2017
  • Eelgrass, Zostera marina is a marine flowering plant that grows in submerged habitats for most of its lifetime, and experiences desiccation stress when exposed to air. Although the desiccation stress observed in adult eelgrass has been frequently studied, there has been little research on desiccation stress in eelgrass seeds. To survey desiccation stress in eelgrass seeds, we studied the germination rate and moisture content upon desiccation caused by exposure to air. The germination rate of the eelgrass seeds exposed to air for 1 hour at $20^{\circ}C$ and 50% relative humidity decreased markedly, and it decreased consistently as the exposure time increased. Eelgrass seeds exposed to air for longer than 11 hours did not germinate. As the exposure time of eelgrass seeds to air increased, the germination rate and moisture content decreased, showing a negative correlation. In addition, eelgrass seeds exposed to air at $30^{\circ}C$ showed significantly lower germination rates than those exposed to air at $10^{\circ}C$ or $20^{\circ}C$. Our results revealed that desiccation causes a decrease in the germination of eelgrass seeds, which will provide useful information for eelgrass habitat restoration using seeds.

Effects of temporary and periodic emersion on the growth of Fucus spiralis and Pelvetia canaliculata germlings

  • Kim, Bo-Yeon;Park, Seo-Kyoung;Norton, Trevor A.;Choi, Han-Gil
    • ALGAE
    • /
    • v.26 no.2
    • /
    • pp.193-200
    • /
    • 2011
  • The stress tolerance ability of Pelvetia canaliculata (L.) Dcne. Et Thur. and Fucus spiralis L. to temporary and periodic emersion stress was examined in order to test the following hypotheses: The upper shore alga, P. canaliculata is more tolerant to desiccation than F. spiralis in the germling stage and the former outgrows the latter under desiccation stress; Germling stress tolerance of the two species is age-specific; Crowding of germlings protects them from desiccation, irrespective of the species involved. Germling growth of the two species was retarded with increasing exposure period and was age-specific, as they were air-exposed at an earlier stage. After 16 days, the length of Pelvetia germlings was similar between 2-day-old germlings (125-140 ${\mu}m$) and 7-day-old germlings (134-140 ${\mu}m$), which were air-exposed during the same period (0, 6, 12, 24, 48, and 72 h) at the two different ages. However, Fucus germlings were significantly larger at 7-day-old germlings (211-277 ${\mu}m$) than at 2-day-old germlings (184-278 ${\mu}m$), especially in the treatments of 48 and 72 h. These results indicate that Fuscus grow faster than Pelvetia and that the growth response of germlings to temporary emersion stress is more sensitive in Fucus than that in Pelvetia. Growth of germlings of both species was reduced with increasing density under favorable growth conditions (submerged control and 6 h / 12 h exposure treatments) in the periodic air-exposed experiments using tidal tanks, but was enhanced under severe emersion stress conditions. P. canaliculata showed better growth at 6 h exposure treatment than that of the control, under continuous submergence, indicating that Pelvetia germlings require a periodic exposure period. Fucus germlings always grew faster than those of Pelvetia and did best in mixed cultures, whereas Pelvetia did least well when mixed with Fucus germlings. The adverse effects of F. spiralis on P. canaliculata were greater than those of Pelvetia cohorts. The outcome of interspecific competition between F. spiralis and P. canaliculata gemlings was slightly altered by exposure period but not to such an extent as to change the outcome.

Stress-Strain Behaviour of Overconsolidated Clay with Loading Rate (하중재하속도에 따른 과압밀점토의 응력-변형 거동)

  • 김병일;신현영;이승원;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.239-244
    • /
    • 2001
  • Natural clayey soils or improved grounds are in a overconsolidated conditions due to changes in vertical stress and pore pressures, desiccation, ageing and so on. These grounds show inelastic stress-strain behaviour characteristics within all range of strain except very small strain (${\gamma}$$\_$s/$\leq$10 ̄$^3$∼10 ̄$^4$%) when construction, such as excavations and retaining walls, is performed. Also it strongly depends on loading rate of current stress path and recent stress path. This study carried out drained stress path tests by varying loading rate of current and recent stress path. Test results indicated that stress-strain behaviour of overconsolidated clay depends on loading rate, especially loading rate of current stress path.

  • PDF

The Nature of the Fracture Patterns Observed at Mawrth Vallis, Mars (화성 Mawrth Vallis 지역에서 관찰되는 파쇄 패턴의 성질)

  • LEE, Cha-Bok
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.2
    • /
    • pp.145-159
    • /
    • 2012
  • Fracture patterns observed in the phyllosilicate-bearing layers of the Mawrth Vallis region are analyzed using High Resolution Imaging Science Experiment image data in order to understand the causes of polygonal fracturing. HiRISE data show that the different mineralogies have distinct surface textures and morphologies. The majority of the nontronite-bearing rocks typically appear to have been heavily eroded and are fractured into irregular shaped blocks with variable size, whereas most of the montmorillonite-bearing rocks have polygons which are relatively consistent in size and shape. The majority of the fracture patterns observed in the nontronite-bearing outcrops are interpreted to be a result of unloading stresses. While the polygonal fractures developed in the montmorillonite-bearing layers appear to be a product of desiccation.

Winterkill and Strategy of Golf Course Management: A Review (동절기 피해의 이해와 겨울철 골프장 관리: 리뷰)

  • Lee, Sang-Kook
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.2
    • /
    • pp.133-137
    • /
    • 2011
  • Winterkill can be defined as any injury including freeze stress kill, winter desiccation, and low temperature disease to turfgrass plants that occurs during the winter period. The major damages from winterkill were low temperature kill, crown hydration, and winter desiccation. Low temperature kill is caused by air and soil temperature. Soil temperature affect more severe to turfgrass than air temperature because low soil temperature cause fetal damage to turfgrass crown. Crown hydration is a form of winter injury in which intercellular water within the plant freezes and causes physical injury to the cell membrane and wall. This is eventually resulted in dehydration of cell. Winter desiccation is the death of leaves or whole plants due to drought during the winter period. To reduce winterkill damage, cultivar selection is very important. If changing cultivar is not allowed, cold temperature hardiness needs to be increased by providing nutrients especially phosphorus and potassium in the late fall. Turf cover is effective way to reduce winterkill damage. Remaining snow is positive process to reduce winterkill damage by insulating soil temperature. The previous researches reported many materials as turf cover such as straw, polypropylene, polyester, and wood mat. Aeration and topdressing is one of the process against winterkill. Both methods are mainly conducted to reduce thickness of thatch layer. In recent, relatively new materials called black or winter topdressing sand are used to protect soil temperature from low air temperature and thaw ice crystal that may remain in soil.

Community-level facilitation by macroalgal foundation species peaks at an intermediate level of environmental stress

  • Scrosati, Ricardo A.
    • ALGAE
    • /
    • v.32 no.1
    • /
    • pp.41-46
    • /
    • 2017
  • In rocky intertidal habitats, abiotic stress due to desiccation and thermal extremes increases with elevation because of tides. A study in Atlantic Canada showed that, at low elevations where conditions are benign due to the brief low tides, fucoid algal canopies (Ascophyllum nodosum and Fucus spp.) do not affect the structure of benthic communities. However, at middle and high elevations, where low tides last longer, fucoid canopies limit abiotic extremes and increase the richness (number of invertebrate and algal species, except fucoids) of benthic communities. Using the data from that study, this paper compares the intensity of facilitation and its importance (relative to all other sources of variation in richness) between middle and high elevations, which represent intermediate and high stress, respectively. Facilitation intensity was calculated as the percent increase in benthic richness between quadrats with low and high canopy cover, while the importance of facilitation was calculated as the percentage of variation in richness explained by canopy cover. Data for 689 quadrats spanning 350 km of coastline were used. Both the intensity and importance of facilitation were greater at middle elevations than at high elevations. As canopies do not affect benthic communities at low elevations, this study suggests that the facilitation-stress relationship at the community level is unimodal for this marine system. Such a pattern was found for some terrestrial systems dominated by canopy-forming plants. Thus, it might be ubiquitous in nature and, as further studies refine it, it might help to predict community-level facilitation depending on environmental stress.

Molecular Cloning and Characterization of Maltooligosyltrehalose Synthase Gene from Nostoc flagelliforme

  • Wu, Shuangxiu;Shen, Rongrong;Zhang, Xiu;Wang, Quanxi
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.579-586
    • /
    • 2010
  • A genomic DNA fragment encoding a putative maltooligosyltrehalose synthase (NfMTS) for trehalose biosynthesis was cloned by the degenerate primer-PCR from cyanobacterium Nostoc flagelliforme. The ORF of NfMTS was 2,799 bp in length and encoded 933 amino acid residues constituting a 106.6 kDa protein. The deduced amino acid sequence of NfMTS contained 4 regions highly conserved for MTSs. By expression of NfMTS in E. coli, it was demonstrated that the recombinant protein catalyzed the conversion of maltohexaose to maltooligosyl trehalose. The $K_m$ of the recombinant enzyme for maltohexaose was 1.87 mM and the optimal temperature and pH of the recombinant enzyme was at $50^{\circ}C$ and 7.0, respectively. The expression of MTS of N. flagelliforme was upregulated, and both trehalose and sucrose contents increased significantly in N. flagelliforme during drought stress. However, trehalose accumulated in small quantities (about 0.36 mg/g DW), whereas sucrose accumulated in high quantities (about 0.90 mg/g DW), indicating both trehalose and sucrose were involved in dehydration stress response in N. flagelliforme and sucrose might act as a chemical chaperone rather than trehalose did during dehydration stress.

irrE, an Exogenous Gene from Deinococcus radiodurans, Improves the Growth of and Ethanol Production by a Zymomonas mobilis Strain Under Ethanol and Acid Stresses

  • Zhang, Ying;Ma, Ruiqiang;Zhao, Zhonglin;Zhou, Zhengfu;Lu, Wei;Zhang, Wei;Chen, Ming
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.7
    • /
    • pp.1156-1162
    • /
    • 2010
  • During ethanol fermentation, bacterial strains may encounter various stresses, such as ethanol and acid shock, which adversely affect cell viability and the production of ethanol. Therefore, ethanologenic strains that tolerate abiotic stresses are highly desirable. Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation, ultraviolet light, and desiccation, and therefore constitute an important pool of extreme resistance genes. The irrE gene encodes a general switch responsible for the extreme radioresistance of D. radiodurans. Here, we present evidence that IrrE, acting as a global regulator, confers high stress tolerance to a Zymomonas mobilis strain. Expression of the gene protected Z. mobilis cells against ethanol, acid, osmotic, and thermal shocks. It also markedly improved cell viability, the expression levels and enzyme activities of pyruvate decarboxylase and alcohol dehydrogenase, and the production of ethanol under both ethanol and acid stresses. These data suggest that irrE is a potentially promising gene for improving the abiotic stress tolerance of ethanologenic bacterial strains.

Molecular Cloning of Maltooligosyltrehalose Trehalohydrolase Gene from Nostoc flagelliforme and Trehalose-Related Response to Stresses

  • Wu, Shuangxiu;He, Liang;Shen, Rongrong;Zhang, Xiu;Wang, Quanxi
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.8
    • /
    • pp.830-837
    • /
    • 2011
  • A genomic DNA fragment encoding a putative maltooligosyltrehalose trehalohydrolase (NfMTH) for trehalose biosynthesis was cloned by the degenerate primer- PCR from cyanobacterium Nostoc flagelliforme. The ORF of NfMTH is 1,848 bp in length and encodes 615 amino acid residues, constituting a 70 kDa protein. The deduced amino acid sequence of NfMTH contains 4 regions highly conserved for MTHs. By expression of NfMTH in E. coli, the function of this protein was demonstrated, where the recombinant protein catalyzed the hydrolysis of maltooligosyl trehalose to trehalose. The expressions of MTH and maltooligosyltrehalose synthase in the filaments of N. flagelliforme were upregulated significantly under dehydration stress, NaCl stress, and high temperature-drought stress. The accumulations of both trehalose and sucrose in the filaments of N. flagelliforme were also improved significantly under the above stresses. Furthermore, trehalose accumulated in smaller quantities than sucrose did when under NaCl stress, but accumulated in higher quantities than sucrose did when under temperature-drought stress, indicating that both trehalose and sucrose were involved in N. flagelliforme adapted to stresses and different strategies conducted in response to various stress conditions.