• 제목/요약/키워드: dermal translocation system

검색결과 3건 처리시간 0.014초

이소플라본을 함유한 마이크로에멀젼의 물성 연구 (A Study on the Characteristics of Microemulsion Containing Isoflavone)

  • 정노희;문영진;이향우;김홍수
    • 한국응용과학기술학회지
    • /
    • 제19권1호
    • /
    • pp.56-62
    • /
    • 2002
  • Microemulsion is stable to aggregation, sedimentation, fusion and has $3nm{\sim}200nm$ of particle size which is transparent and semitransparent. The isoflavone as a derivatives of Flavone is colorless crystalline compounds. It has similar basic structure to steroid materials which is hormone that acts to skin physiological phenomenon. On this study, we tried to search and demonstrate system content rate of dermal translocation system for cosmetics using O/W type microemulsion containing isoflavone. We manufactured O/W microemulsions by phase inversion emulsification method. It's was found that POE(20) monostearate with HLB value 14 caused microemulsion to be formed, which had $4nm{\sim}18nm$ of average diameter and $3nm{\sim}33nm$ of particle size distribution. Apparent viscosities of the microemulsions have increased in proportion to add surfactant dose.

이소플라본을 함유한 마이크로에멀젼의 안정성 및 응용 평가 (The Evaluation for Stabilization and Application of Microemulsion Containing Isoflavone)

  • 정노희;문영진;이향우;남기대
    • 한국응용과학기술학회지
    • /
    • 제19권3호
    • /
    • pp.167-173
    • /
    • 2002
  • The isoflavone as a derivatives of flavone is colorless crystalline compounds. It acts on synthesis of fibronectine, collagen III, collagen I in human normal fibroblast by same biological activity to animal hormone. In this study, we tried to search and demonstrate system content rate of dermal translocation system for cosmetics using microemulsion containing isoflavone. The results of microemulsion stability test by centrifugation, storage in incubator and circulation chamber showed that separation of phase did not appear after 30 days. By the skin flexibility test, it has confirmed efficiency and effect as cosmetics materials. As the result, the microemulsion showed that skin flexibility factor improved up to 7.6%. We could confirm that O/W type microemulsion was stable system.

Ginsenoside Rg4 Enhances the Inductive Effects of Human Dermal Papilla Spheres on Hair Growth Via the AKT/GSK-3β/β-Catenin Signaling Pathway

  • Lee, Yun Hee;Choi, Hui-Ji;Kim, Ji Yea;Kim, Ji-Eun;Lee, Jee-Hyun;Cho, So-Hyun;Yun, Mi-Young;An, Sungkwan;Song, Gyu Yong;Bae, Seunghee
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권7호
    • /
    • pp.933-941
    • /
    • 2021
  • Ginsenoside Rg4 is a rare ginsenoside that is naturally found in ginseng, and exhibits a wide range of biological activities including antioxidant and anti-inflammatory properties in several cell types. The purpose of this study was to use an in vivo model of hair follicle (HF)-mimic based on a human dermal papilla (DP) spheroid system prepared by three-dimensional (3D) culture and to investigate the effect of Rg4 on the hair-inductive properties of DP cells. Treatment of the DP spheroids with Rg4 (20 to 50 ㎍/ml) significantly increased the viability and size of the DP spheres in a dose-dependent manner. Rg4 also increased the mRNA and protein expression of DP signature genes that are related to hair growth including ALP, BMP2, and VCAN in the DP spheres. Analysis of the signaling molecules and luciferase reporter assays further revealed that Rg4 induces the activation of phosphoinositide 3-kinase (PI3K)/AKT and the inhibitory phosphorylation of GSK3β, which activates the WNT/β-catenin signaling pathway. These results correlated with not only the increased nuclear translocation of β-catenin following the treatment of the DP spheres with Rg4 but also the significant elevation of mRNA expression of the downstream target genes of the WNT/β-catenin pathway including WNT5A, β-catenin, and LEF1. In conclusion, these results demonstrated that ginsenoside Rg4 promotes the hair-inductive properties of DP cells by activating the AKT/GSK3β/β-catenin signaling pathway in DP spheres, suggesting that Rg4 could be a potential natural therapy for hair growth.