• Title/Summary/Keyword: derivative formula

Search Result 70, Processing Time 0.021 seconds

Variational Formulation for Shape Optimization of Spatial Beam Structures (정식화를 이용한 3차원 구조물의 형상 최적설계)

  • 최주호;김종수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.123-130
    • /
    • 2002
  • A general formulation for shape design sensitivity analysis over three dimensional beam structure is developed based on a variational formulation of the beam in linear elasticity. Sensitivity formula is derived based on variational equations in cartesian coordinates using the material derivative concept and adjoint variable method for the displacement and Von-Mises stress functionals. Shape variation is considered for the beam shape in general 3-dimensional direction as well as for the orientation angle of the beam cross section. In the sensitivity expression, the end points evaluation at each beam segment is added to the integral formula, which are summed over the entire structure. The sensitivity formula can be evaluated with generality and ease even by employing piecewise linear design velocity field despite the bending model is fourth order differential equation. For the numerical implementation, commercial software ANSYS is used as analysis tool for the primal and adjoint analysis. Once the design variable set is defined using ANSYS language, shape and orientation variation vector at each node is generated by making finite difference to the shape with respect to each design parameter, and is used for the computation of sensitivity formula. Several numerical examples are taken to show the advantage of the method, in which the accuracy of the sensitivity is evaluated. The results are found excellent even by employing a simple linear function for the design velocity evaluation. Shape optimization is carried out for the geometric design of an archgrid and tilted bridge, which is to minimize maximum stress over the structure while maintaining constant weight. In conclusion, the proposed formulation is a useful and easy tool in finding optimum shape in a variety of the spatial frame structures.

  • PDF

On the students' thinking of the properties of derivatives (도함수의 성질에 관련한 학생들의 사고에 대하여)

  • Choi, Young Ju;Hong, Jin Kon
    • The Mathematical Education
    • /
    • v.53 no.1
    • /
    • pp.25-40
    • /
    • 2014
  • Mathematical concept exists in the structural form, not in the independent form. The purpose of this study is to consider the network which students actually have for the mathematical concept structure related to the properties of derivatives. First, we analyzed the properties of derivatives in 'Mathematics II' and showed the mathematical concept structure of the relations among derivatives, functions, and primitive functions as a network. Also, we investigated the understanding of high school students for the mathematical concept structure between derivatives and functions, and the structure between functions and second order derivatives when the functional formula is not given, and only the graph is given. The results showed that students mainly focus on the relation of 'function-derivatives', the thinking process for direction of derivative and the thinking style for algebra. On this basis, we suggest the educational implication that is necessary for students to build the network properly.

Heat Transfer Analysis of Bi-Material Problem with Interfacial Boundary Using Moving Least Squares Finite Difference Method (이동최소제곱 유한차분법을 이용한 계면경계를 갖는 이종재료의 열전달문제 해석)

  • Yoon, Young-Cheol;Kim, Do-Wan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.779-787
    • /
    • 2007
  • This paper presents a highly efficient moving least squares finite difference method (MLS FDM) for a heat transfer problem of bi-material with interfacial boundary. The MLS FDM directly discretizes governing differential equations based on a node set without a grid structure. In the method, difference equations are constructed by the Taylor polynomial expanded by moving least squares method. The wedge function is designed on the concept of hyperplane function and is embedded in the derivative approximation formula on the moving least squares sense. Thus interfacial singular behavior like normal derivative jump is naturally modeled and the merit of MLS FDM in fast derivative computation is assured. Numerical experiments for heat transfer problem of bi-material with different heat conductivities show that the developed method achieves high efficiency as well as good accuracy in interface problems.

Shape Design Sensitivity Analysis for Interface Problem in Axisymmetric Elasticity

  • Choi, Joo-Ho;Lee, Boo-Youn;Han, Jung-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.197-206
    • /
    • 2000
  • A boundary integral equation method in the shape design sensitivity analysis is developed for the elasticity problems with axisymmetric non-homogeneous bodies. Functionals involving displacements and tractions at the zonal interface are considered. Sensitivity formula in terms of the interface shape variation is then derived by taking derivative of the boundary integral identity. Adjoint problem is defined such that displacement and traction discontinuity is imposed at the interface. Analytic example for a compound cylinder is taken to show the validity of the derived sensitivity formula. In the numerical implementation, solutions at the interface for the primal and adjoint system are used for the sensitivity. While the BEM is a natural tool for the solution, more generalization should be made since it should handle the jump conditions at the interface. Accuracy of the sensitivity is evaluated numerically by the same compound cylinder problem. The endosseous implant-bone interface problem is considered next as a practical application, in which the stress value is of great importance for successful osseointegration at the interface. As a preliminary step, a simple model with tapered cylinder is considered in this paper. Numerical accuracy is shown to be excellent which promises that the method can be used as an efficient and reliable tool in the optimization procedure for the implant design. Though only the axisymmetric problem is considered here, the method can be applied to general elasticity problems having interface.

  • PDF

ON THE ANALOGS OF BERNOULLI AND EULER NUMBERS, RELATED IDENTITIES AND ZETA AND L-FUNCTIONS

  • Kim, Tae-Kyun;Rim, Seog-Hoon;Simsek, Yilmaz;Kim, Dae-Yeoul
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.435-453
    • /
    • 2008
  • In this paper, by using q-deformed bosonic p-adic integral, we give $\lambda$-Bernoulli numbers and polynomials, we prove Witt's type formula of $\lambda$-Bernoulli polynomials and Gauss multiplicative formula for $\lambda$-Bernoulli polynomials. By using derivative operator to the generating functions of $\lambda$-Bernoulli polynomials and generalized $\lambda$-Bernoulli numbers, we give Hurwitz type $\lambda$-zeta functions and Dirichlet's type $\lambda$-L-functions; which are interpolated $\lambda$-Bernoulli polynomials and generalized $\lambda$-Bernoulli numbers, respectively. We give generating function of $\lambda$-Bernoulli numbers with order r. By using Mellin transforms to their function, we prove relations between multiply zeta function and $\lambda$-Bernoulli polynomials and ordinary Bernoulli numbers of order r and $\lambda$-Bernoulli numbers, respectively. We also study on $\lambda$-Bernoulli numbers and polynomials in the space of locally constant. Moreover, we define $\lambda$-partial zeta function and interpolation function.

Shape Design Sensitivity Analysis and Optimization of Axisymmetric Shell Structures (축대칭 쉘 구조물의 형상 설계민감도해석 및 최적설계)

  • 김인용;곽병만
    • Computational Structural Engineering
    • /
    • v.7 no.2
    • /
    • pp.147-153
    • /
    • 1994
  • A method for shape design sensitivity analysis for axisymmetric shells of general shapes is developed. The basic approach is to divide the structures into many segments : For each of the segments, the formula for a shallow arch or shell can be applied and the results assembled. To interconnect those segments, the existing sensitivity formula, obtained for a variation only in the direction perpendicular to the plane on which the structure is mapped, has been extended to include a variation normal to the middle surface. The method follows the adjoint variable approach based on the material derivative concept as established in the literature. Numerical examples are taken to illustrate the method and the applicability to practical design problems.

  • PDF

A FINITE DIFFERENCE/FINITE VOLUME METHOD FOR SOLVING THE FRACTIONAL DIFFUSION WAVE EQUATION

  • Sun, Yinan;Zhang, Tie
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.553-569
    • /
    • 2021
  • In this paper, we present and analyze a fully discrete numerical method for solving the time-fractional diffusion wave equation: ∂βtu - div(a∇u) = f, 1 < β < 2. We first construct a difference formula to approximate ∂βtu by using an interpolation of derivative type. The truncation error of this formula is of O(△t2+δ-β)-order if function u(t) ∈ C2,δ[0, T] where 0 ≤ δ ≤ 1 is the Hölder continuity index. This error order can come up to O(△t3-β) if u(t) ∈ C3 [0, T]. Then, in combinination with the linear finite volume discretization on spatial domain, we give a fully discrete scheme for the fractional wave equation. We prove that the fully discrete scheme is unconditionally stable and the discrete solution admits the optimal error estimates in the H1-norm and L2-norm, respectively. Numerical examples are provided to verify the effectiveness of the proposed numerical method.

IDENTITIES AND RELATIONS ON THE q-APOSTOL TYPE FROBENIUS-EULER NUMBERS AND POLYNOMIALS

  • Kucukoglu, Irem;Simsek, Yilmaz
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.265-284
    • /
    • 2019
  • The main purpose of this paper is to investigate the q-Apostol type Frobenius-Euler numbers and polynomials. By using generating functions for these numbers and polynomials, we derive some alternative summation formulas including powers of consecutive q-integers. By using infinite series representation for q-Apostol type Frobenius-Euler numbers and polynomials including their interpolation functions, we not only give some identities and relations for these numbers and polynomials, but also define generating functions for new numbers and polynomials. Further we give remarks and observations on generating functions for these new numbers and polynomials. By using these generating functions, we derive recurrence relations and finite sums related to these numbers and polynomials. Moreover, by applying higher-order derivative to these generating functions, we derive some new formulas including the Hurwitz-Lerch zeta function, the Apostol-Bernoulli numbers and the Apostol-Euler numbers. Finally, for an application of the generating functions, we derive a multiplication formula, which is very important property in the theories of normalized polynomials and Dedekind type sums.

Determination of L-Carnitine in Infant Powdered Milk Samples after Derivatization

  • Park, Jung Min;Koh, Jong Ho;Kim, Jin Man
    • Food Science of Animal Resources
    • /
    • v.41 no.4
    • /
    • pp.731-738
    • /
    • 2021
  • Herein, a novel analytical method using a high-performance liquid chromatography-fluorescence detector (HPLC/FLD) is developed for rapidly measuring an L-carnitine ester derivative in infant powdered milk. In this study, solid-phase extraction cartridges filled with derivatized methanol and distilled water were used to effectively separate L-carnitine. Protein precipitation pretreatment was carried out to remove the protein and recover the analyte extract with a high recovery (97.16%-106.56%), following which carnitine in the formula was derivatized to its ester form. Precolumn derivation with 1-aminoanthracene (1AA) was carried out in a phosphate buffer using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) as the catalyst. Method validation was performed following the AOAC guidelines. The calibration curves were linear in the L-carnitine concentration range of 0.1-2.5 mg/L. The lower limit of quantitation and limit of detection of L-carnitine were 0.076 and 0.024 mg/L, respectively. The intra- and interday precision and recovery results were within the allowable limits. The results showed that our method helped reduce the sample preparation time. It also afforded higher resolution and better reproducibility than those obtained by traditional methods. Our method is suitable for detecting the quantity of L-carnitine in infant powdered milk containing a large amount of protein or starch.

A SNOWBALL CURRENCY OPTION

  • Shim, Gyoo-Cheol
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.15 no.1
    • /
    • pp.31-41
    • /
    • 2011
  • I introduce a derivative called "Snowball Currency Option" or "USDKRWSnowball Extendible At Expiry KO" which was traded once in the over-the-counter market in Korea. A snowball currency option consists of a series of maturities the payoffs at which are like those of a long position in a put option and two short position in an otherwise identical call. The strike price at each maturity depends on the exchange rate and the previous strike price so that the strike prices are random and path-dependent, which makes it difficult to find a closed form solution of the value of a snowball currency option. I analyze the payoff structure of a snowball currency option and derive an upper and a lower boundaries of the value of it in a simplified model. Furthermore, I derive a pricing formula using integral in the simplified model.