• 제목/요약/키워드: depth-annotated image

검색결과 5건 처리시간 0.016초

능동형 센서의 깊이 정보를 이용한 컴퓨터 형성 홀로그램 (Computer-generated hologram based on the depth information of active sensor)

  • 김상진;강훈종;유지상;이승현
    • 대한전자공학회논문지SD
    • /
    • 제43권10호
    • /
    • pp.22-27
    • /
    • 2006
  • 본 논문에서는 능동형 센서와 연결된 카메라에서 얻어진 깊이 정보와 칼라 영상으로부터 컴퓨터형성 홀로그램을 제작하는 방법을 제안하였다. CGH 생성을 위해 컴퓨터그래픽 모델을 사용하는 기존의 홀로그래픽 디스플레이 시스템과는 달리, 카메라로 획득되는 각 물체의 칼라 정보 뿐 아니라 깊이 정보를 포함하는 카메라의 실사 영상을 사용하였다. 이 과정은 실사 물체로부터 깊이가 포함된 영상정보를 획득하는 단계와 깊이 정보로부터 추출된 3D 정보를 이용하여 CGH를 생성하는 두 가지 단계로 구성되어 있다. 또한, 홀로그래픽 디스플레이 시스템을 구성하여 제작된 CGH를 디스플레이 하였다. 실험 시스템에서는 1408X1050의 해상도와 10.4um의 픽셀 크기를 갖는 반사형 LCD 패널을 사용하여 CGH로부터 영상을 재생하였다.

Automatic Volumetric Brain Tumor Segmentation using Convolutional Neural Networks

  • Yavorskyi, Vladyslav;Sull, Sanghoon
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.432-435
    • /
    • 2019
  • Convolutional Neural Networks (CNNs) have recently been gaining popularity in the medical image analysis field because of their image segmentation capabilities. In this paper, we present a CNN that performs automated brain tumor segmentations of sparsely annotated 3D Magnetic Resonance Imaging (MRI) scans. Our CNN is based on 3D U-net architecture, and it includes separate Dilated and Depth-wise Convolutions. It is fully-trained on the BraTS 2018 data set, and it produces more accurate results even when compared to the winners of the BraTS 2017 competition despite having a significantly smaller amount of parameters.

  • PDF

Detecting Complex 3D Human Motions with Body Model Low-Rank Representation for Real-Time Smart Activity Monitoring System

  • Jalal, Ahmad;Kamal, Shaharyar;Kim, Dong-Seong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권3호
    • /
    • pp.1189-1204
    • /
    • 2018
  • Detecting and capturing 3D human structures from the intensity-based image sequences is an inherently arguable problem, which attracted attention of several researchers especially in real-time activity recognition (Real-AR). These Real-AR systems have been significantly enhanced by using depth intensity sensors that gives maximum information, in spite of the fact that conventional Real-AR systems are using RGB video sensors. This study proposed a depth-based routine-logging Real-AR system to identify the daily human activity routines and to make these surroundings an intelligent living space. Our real-time routine-logging Real-AR system is categorized into two categories. The data collection with the use of a depth camera, feature extraction based on joint information and training/recognition of each activity. In-addition, the recognition mechanism locates, and pinpoints the learned activities and induces routine-logs. The evaluation applied on the depth datasets (self-annotated and MSRAction3D datasets) demonstrated that proposed system can achieve better recognition rates and robust as compare to state-of-the-art methods. Our Real-AR should be feasibly accessible and permanently used in behavior monitoring applications, humanoid-robot systems and e-medical therapy systems.

증강현실 캐릭터 구현을 위한 AI기반 객체인식 연구 (AI-Based Object Recognition Research for Augmented Reality Character Implementation)

  • 이석환;이정금;심현
    • 한국전자통신학회논문지
    • /
    • 제18권6호
    • /
    • pp.1321-1330
    • /
    • 2023
  • 본 연구는 증강현실에서 적용할 캐릭터 생성에서 단일 이미지를 통해 여러 객체에 대한 3D 자세 추정 문제를 연구한다. 기존 top-down 방식에서는 이미지 내의 모든 객체를 먼저 감지하고, 그 후에 각각의 객체를 독립적으로 재구성한다. 문제는 이렇게 재구성된 객체들 사이의 중첩이나 깊이 순서가 불일치 하는 일관성 없는 결과가 발생할 수 있다. 본 연구의 목적은 이러한 문제점을 해결하고, 장면 내의 모든 객체에 대한 일관된 3D 재구성을 제공하는 단일 네트워크를 개발하는 것이다. SMPL 매개변수체를 기반으로 한 인체 모델을 top-down 프레임워크에 통합이 중요한 선택이 되었으며, 이를 통해 거리 필드 기반의 충돌 손실과 깊이 순서를 고려하는 손실 두 가지를 도입하였다. 첫 번째 손실은 재구성된 사람들 사이의 중첩을 방지하며, 두 번째 손실은 가림막 추론과 주석이 달린 인스턴스 분할을 일관되게 렌더링하기 위해 객체들의 깊이 순서를 조정한다. 이러한 방법은 네트워크에 이미지의 명시적인 3D 주석 없이도 깊이 정보를 제공하게 한다. 실험 결과, 기존의 Interpenetration loss 방법은 MuPoTS-3D가 114, PoseTrack이 654에 비해서 본 연구의 방법론인 Lp 손실로 네트워크를 훈련시킬 때 MuPoTS-3D가 34, PoseTrack이 202로 충돌수가 크게 감소하는 것으로 나타났다. 본 연구 방법은 표준 3D 자세벤치마크에서 기존 방법보다 더 나은 성능을 보여주었고, 제안된 손실들은 자연 이미지에서 더욱 일관된 재구성을 실현하게 하였다.

저전력 장치를 위한 자원 효율적 객체 검출기 (Resource-Efficient Object Detector for Low-Power Devices)

  • 악세이 쿠마 샤마;김경기
    • 반도체공학회 논문지
    • /
    • 제2권1호
    • /
    • pp.17-20
    • /
    • 2024
  • 본 논문은 전통적인 자원 집약적인 컴퓨터 비전 모델의 한계를 해결하기 위해 저전력 엣지 장치에 최적화된 새로운 경량 객체 검출 모델을 제안합니다. 제안된 검출기는 Single Shot Detector (SSD)에 기반하여 소형이면서도 견고한 네트워크를 설계하였고, 작은 객체를 효율적으로 감지하는 데 있어 효율성을 크게 향상시키도록 모델을 구성하였다. 이 모델은 주로 두 가지 구성요소로 구성되어 있습니다: Depthwise 와 Pointwise Convolution 레이어를 사용하여 효율적인 특징 추출을 위한 Light_Block, 그리고 작은 객체의 향상된 감지를 위한 Enhancer_Block 으로 나누었다. 우리의 모델은 300x480 의 이미지 크기를 가진 Udacity 주석이 달린 데이터셋에서 처음부터 훈련되었으며, 사전 훈련된 분류 가중치의 필요성을 제거하였다. 약 0.43M 의 파라미터로 5.5MB 만의 무게를 가진 우리의 검출기는 평균 정밀도 (mAP) 27.7%와 140 FPS 의 처리 속도를 달성하여, 정밀도와 효율성 모두에서 기존 모델을 능가하였다. 따라서, 본 논문은 추론의 정확성을 손상시키지 않으면서 엣지 장치를 위한 객체 검출에서의 효과적인 경량화를 보여주고 있다.