• Title/Summary/Keyword: depth resolution

Search Result 676, Processing Time 0.022 seconds

SUPPRESSION OF SWELL EFFECT IN HIGH-RESOLUTION MARINE SEISMIC DATA USING CROSS-CORRELATION SCHEME (상호상관기법을 이용한 고분해능 천부해저탄성파탐사 자료에서의 너울효과 제거)

  • Kim,Jong-Cheon;Lee,Ho-Yeong;Kim,Ji-Su;Gang,Dong-Hyo
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.1
    • /
    • pp.31-38
    • /
    • 2003
  • Multi-channel seismic survey, which has been mainly employed in oil prospecting, is carried out as a high resolution shallow marine seismic exploration. Fault drop as small as 1 m can be resolved by employing high-resolution seismic survey. Similar to the effect of shallow inhomogenities in the land seismic data, due to occurrence of swell quite often higher than 1 m, shallow marine seismic data tend to be severely degraded. Suppression of such a swell effect is critical in processing of steps of marine seismic shallow high-resolution data. Compared to the moving average depth method, a newly developed method using cross-correlation technique is found out to be very effective in increasing the resolution of the shallow reflection events by accuratly elucidating the depth of sea bottom.

  • PDF

Development of HD Resolution Stereoscopic Camera and Apparatus for Recognizing Depth of Object (HD 해상도 스테레오 영상 카메라 구현과 거리 인식 응용)

  • Han, Byung-Wan;Lim, Sung-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.351-357
    • /
    • 2013
  • Two cameras which function like human eyes, are needed to make 3D stereoscopic image. That is, stereoscopic image is made via 3 dimensional image processing for combining two images from left and right camera. In this paper two high resolution zoom cameras are used to make HD resolution stereoscopic camera. And the algorithm which convert to stereoscopic image from HD resolution zoom camera image, is implemented using FPGA for real-time operation. The algorithm which measure the depth of object between left and right image is proposed.

A depth-based Multi-view Super-Resolution Method Using Image Fusion and Blind Deblurring

  • Fan, Jun;Zeng, Xiangrong;Huangpeng, Qizi;Liu, Yan;Long, Xin;Feng, Jing;Zhou, Jinglun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.5129-5152
    • /
    • 2016
  • Multi-view super-resolution (MVSR) aims to estimate a high-resolution (HR) image from a set of low-resolution (LR) images that are captured from different viewpoints (typically by different cameras). MVSR is usually applied in camera array imaging. Given that MVSR is an ill-posed problem and is typically computationally costly, we super-resolve multi-view LR images of the original scene via image fusion (IF) and blind deblurring (BD). First, we reformulate the MVSR problem into two easier problems: an IF problem and a BD problem. We further solve the IF problem on the premise of calculating the depth map of the desired image ahead, and then solve the BD problem, in which the optimization problems with respect to the desired image and with respect to the unknown blur are efficiently addressed by the alternating direction method of multipliers (ADMM). Our approach bridges the gap between MVSR and BD, taking advantages of existing BD methods to address MVSR. Thus, this approach is appropriate for camera array imaging because the blur kernel is typically unknown in practice. Corresponding experimental results using real and synthetic images demonstrate the effectiveness of the proposed method.

Small scale Structure of Galactic Molecular Clouds toward Continuum Sources by KVN

  • Han, Junghwan;Yun, Young Joo;Park, Yong-Sun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.82-82
    • /
    • 2014
  • One of the subjects in clouds' structure and development is small scale structure of interstellar cloud. The possibility of AU scale structure (Marscher et al. 1993; Moore & Marscher 1995; Roy et al. 2012) is discussed, and this small scale structure is considered as the result of hydrogen volume density (Moore & Marscher 1995), or small-scale chemical and other inhomogeneities (Liszt & Lucas 2000). In order to study this subject with emission line, extremely high resolution is mandatory by VLBI system. However, the alternative method could be observing the absorption line of interstellar cloud on the continuum object. In this case, the resolution would be restricted to the size of the continuum object, if the size of the object is smaller than the resolution of a used telescope. We observed the previous researchers' three objects (BLLAC, NRAO150, B0528+138), whose spectrums are changed from 1993 to 1998 (Liszt & Lucas 2000), with KVN. Through KVN observation, we found the changes of optical depth spectrum compared with the previous spectrums. We will discuss the optical depth spectrum variation by time variation and the meaning of it.

  • PDF

Resolution Analysis of Axially Distributed Image Sensing Systems under Equally Constrained Resources

  • Cho, Myungjin;Shin, Donghak
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.405-409
    • /
    • 2013
  • In this paper, a unifying framework to evaluate the depth resolution of axially distributed image sensing (ADS) systems under fixed resource constraints is proposed. The proposed framework enables one to evaluate the system performance as a function of system parameters such as the number of cameras, the number of pixels, pixel size, and so on. The Monte Carlo simulations are carried out to evaluate ADS system performance as a function of system parameters. To the best of our knowledge, this is the first report on quantitative analysis of ADS systems under fixed resource constraints.

Multi-Resolution MBS Technique for Intermediate Image Synthesis (중간 영상 합성을 위한 다해상도 다기선 스테레오 정합 기법)

  • 박남준;이제호;권용무;박상희
    • Journal of Broadcast Engineering
    • /
    • v.2 no.2
    • /
    • pp.216-224
    • /
    • 1997
  • In this paper, we propose a depth information extraction method for intermediate image synthesis. As stereo matching method, MBS(Multiple-Baseline Stereo) method has been proposed, in which the matching accuracy increases by using the multiple camera, but there are some inherent problems such as computational complexity, boundary overreach(BO) in depth map, and occlusion. So, we propose the modified version of MBS so called Multi-Resolution MBS(MR-MBS). Moreover, we also propose an adaptive occlusion area processing technique to improve the accuracy of the depth information in occlusion area.

  • PDF

The Design & Manufacture and Characteristic Analysis of Eddy Current Sensor for Bolt Hole Defect Evaluation (볼트 홀 결함 평가용 와전류 센서 설계제작 및 특성분석)

  • Ahn, Y.S.;Gil, D.S.;Park, S.G.
    • Journal of Power System Engineering
    • /
    • v.15 no.4
    • /
    • pp.37-41
    • /
    • 2011
  • This paper introduces the special eddy current sensor and its characteristic for bolt hole defect evaluation in gas turbine rotor. In the past, Fluorescent penetration inspection method was used for qualitative defect evaluation in gas turbine rotor bolt hole. This method can defect the bolt hole defect but can not evaluate the defect size. Nowadays, eddy current method is used quantitative defect evaluation due to advanced sensor design technology. And eddy current method is more time and cost saving than the old method. We developed bolt shape eddy current sensor for the rotor bolt hole defect detection and evaluation. The eddy current sensor moves to the bolt hole guided by screw nut and detects the defect on the bolt hole. The bolt hole mock-up and artificial defects were made and used for the signal detection & resolution analysis of eddy current sensor. The results show that signal detection capability is enough to detect 0.2 mm depth defect. And the resolution capability is enough to differentiate 02, 0.5, 1.0 and 2.0 mm depth defect.

Study of Efficient Network Structure for Real-time Image Super-Resolution (실시간 영상 초해상도 복원을 위한 효율적인 신경망 구조 연구)

  • Jeong, Woojin;Han, Bok Gyu;Lee, Dong Seok;Choi, Byung In;Moon, Young Shik
    • Journal of Internet Computing and Services
    • /
    • v.19 no.4
    • /
    • pp.45-52
    • /
    • 2018
  • A single-image super-resolution is a process of restoring a high-resolution image from a low-resolution image. Recently, the super-resolution using the deep neural network has shown good results. In this paper, we propose a neural network structure that improves speed and performance over conventional neural network based super-resolution methods. To do this, we analyze the conventional neural network based super-resolution methods and propose solutions. The proposed method reduce the 5 stages of the conventional method to 3 stages. Then we have studied the optimal width and depth by experimenting on the width and depth of the network. Experimental results have shown that the proposed method improves the disadvantages of the conventional methods. The proposed neural network structure showed superior performance and speed than the conventional method.

Enhancing Depth Accuracy on the Region of Interest in a Scene for Depth Image Based Rendering

  • Cho, Yongjoo;Seo, Kiyoung;Park, Kyoung Shin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2434-2448
    • /
    • 2014
  • This research proposed the domain division depth map quantization for multiview intermediate image generation using Depth Image-Based Rendering (DIBR). This technique used per-pixel depth quantization according to the percentage of depth bits assigned in domains of depth range. A comparative experiment was conducted to investigate the potential benefits of the proposed method against the linear depth quantization on DIBR multiview intermediate image generation. The experiment evaluated three quantization methods with computer-generated 3D scenes, which consisted of various scene complexities and backgrounds, under varying the depth resolution. The results showed that the proposed domain division depth quantization method outperformed the linear method on the 7- bit or lower depth map, especially in the scene with the large object.

Terahertz Nondestructive Time-of-flight Imaging with a Large Depth Range

  • Kim, Hwan Sik;Kim, Jangsun;Ahn, Yeong Hwan
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.619-626
    • /
    • 2022
  • In this study, we develop a three-dimensional (3D) terahertz time-of-flight (THz-TOF) imaging technique with a large depth range, based on asynchronous optical sampling (ASOPS) methods. THz-TOF imaging with the ASOPS technique enables rapid scanning with a time-delay span of 10 ns. This means that a depth range of 1.5 m is possible in principle, whereas in practice it is limited by the focus depth determined by the optical geometry, such as the focal length of the scan lens. We characterize the spatial resolution of objects at different vertical positions with a focal length of 5 cm. The lateral resolution varies from 0.8-1.8 mm within the vertical range of 50 mm. We obtain THz-TOF images for samples with multiple reflection layers; the horizontal and vertical locations of the objects are successfully determined from the 2D cross-sectional images, or from reconstructed 3D images. For instance, we can identify metallic objects embedded in insulating enclosures having a vertical depth range greater than 30 mm. For feasible practical use, we employ the proposed technique to locate a metallic object within a thick chocolate bar, which is not accessible via conventional transmission geometry.