• Title/Summary/Keyword: depth radiation

Search Result 637, Processing Time 0.035 seconds

Interpretation of Physical Properties of Marine Sediments Using Multi­Sensor Core Logger (MSCL): Comparison with Discrete Samples

  • Kim, Gil-Young;Kim, Dae-Choul
    • Journal of the korean society of oceanography
    • /
    • v.38 no.4
    • /
    • pp.166-172
    • /
    • 2003
  • Multi­Sensor Core Logger (MSCL) is a useful system for logging the physical properties (compressional wave velocity, wet bulk density, fractional porosity, magnetic susceptibility and/or natural gamma radiation) of marine sediments through scanning of whole cores in a nondestructive fashion. But MSCL has a number of problems that can lead to spurious results depending on the various factors such as core slumping, gas expansion, mechanical stretching, and the thickness variation of core liner and sediment. For the verification of MSCL data, compressional wave velocity, wet bulk density, and porosity were measured on discrete samples by Hamilton Frame and Gravimetric method, respectively. Acoustic impedance was also calculated. Physical property data (velocity, wet bulk density, and impedance) logged by MSCL were slightly larger than those of discrete sample, and porosity is reverse. Average difference between MSCL and discrete sample at both sites is relatively small such as 22­24 m/s in velocity, $0.02­-0.08\;g/\textrm{cm}^3$ in wet bulk density, and 2.5­2.7% in porosity. The values also show systematic variation with sediment depth. A variety of factors are probably responsible for the differences including instrument error, various measurement method, sediment disturbance, and accuracy of calibration. Therefore, MSCL can be effectively used to collect physical property data with high resolution and quality, if the calibration is accurately completed.

Effect of Flaw Characterization on the Structural Integrity Evaluation Under Pressurized Thermal Shock (가압열충격 사고시 결함 이상화 방법이 구조물 건전성 평가에 미치는 영향)

  • Kim, Jin-Su;Choe, Jae-Bung;Kim, Yeong-Jin;Park, Yun-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.275-282
    • /
    • 2001
  • The reactor pressure vessel is usually cladded with stainless steel to prevent corrosion and radiation embrittlement. Number of subclad cracks may be found during an in-service-inspection due to the presence of cladding. It is specified, in ASME Sec. XI, that a subclad crack is characterized as a surface crack when the thickness of the clad is less than 40% of the crack depth. This condition is provided to keep the crack integrity evaluation conservative. In order to refine the fracture assessment procedures for such subclad cracks under a pressurized thermal shock condition, three dimensional finite element analyses are applied for various subclad cracks existing under cladding. A total of 36 crack geometries are analyzed, and the results are compared with those for surface cracks. The resulting stress intensity factors for subclad cracks are 6 to 44% less than those for surface cracks. It is proven that the flaw characterization condition as specified in ASME Sec. XI can be overly conservative for some subclad cracks.

CO2 Laser micro-structuring of optical fiber with negative conical shape (CO2 레이저를 이용한 음각 원뿔 구조 광섬유 팁 가공 최적화 연구)

  • Yoo, Dongyoon;Choi, Hun-Kook;Sohn, Ik-Bu;Noh, Young-Chul;Jung, Deok;Kim, Young-Sup;Lee, Ho;Kim, Chang-Hwan
    • Laser Solutions
    • /
    • v.18 no.3
    • /
    • pp.14-19
    • /
    • 2015
  • A helical fabricating method using $CO_2$ laser was utilized for producing cone-shaped structure on a silica substrate. Output power and the number of scanning radiation were modified in order to control the structure. The experiment shows that the depth and width of cone-shape were increased with higher output power of the laser and the number of scanning. We demonstrate fabrication of multidirectional side-firing optical fiber with diameter of 440 um using the $CO_2$ laser fabrication technique.

A Study on the Flame Behavior of Whirl Eire and Pool Fire (Whirl Fire와 Pool fire의 화염 거동에 관한 연구)

  • Oh Kyu-Hyung;Kang Youn-Ok;Lee Sung-Eun
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.45-50
    • /
    • 2004
  • 4-panel of 1m height and 45cm width were fixed on the $40cm{\times}40cm$ bottom plate and the opening of the panel comer was 5cm. Diameter of stainless vessel is loom and its height is 2cm and it located at the center of the bottom plate. 78mL liquid fuel was filled in the vessel and its depth was 1cm. Flame temperature was measured with K type thermocouple, and radiation heat of flame was measured with heat flux meter. Flame height and its behavior was visualized with video camera. and mass burning rate was measured by fuel combustion time. According to the development of fire, flame swirling was begin. From the experiment the mass burning rate was larger and the height of flame was higher than the usual pool fire flame. Flame temperature and heat flux also increased far more than the pool fire. Consequently the swirling air flow through the openings between the panel and thermal buoyance contribute to increase of heat release rate, flame length and mass burning rate.

Energy Dependancy of the Polyethylene Terephthalate Film for Radiation Detector (방사선 검출기용 PET 박막의 에너지 의존성)

  • Back, Geum-Mun;Kim, Keon-Chung;Kim, Wang-Gon;Hong, Jin-Woong;Yi, Byong-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.71-74
    • /
    • 2002
  • Currently small and accurate dosimeters are on the rise. In this study, the feasibility and energy dependency of the electret dosimeter that made of PET (polyethylene terephtalate) were observed by irradiating 4, 6, 15 MV photon beams from the clinical linear accelerator to develop a dosimeter for the clinical field. $10{\times}10cm$ field size of the photon beams were irradiated to the electret dosimeter where the 2.5 cm depth in the polystylene phantom from 100 cm SSD, while 300 DCV was applied to the electret dosimeter. The result showed that the absorbed dose was proportional to the charge linearly, and the volume of a dosimeter could be reduced and the signals were high enough. According to this study, it was found that the polymer electret detector could be produced as a large quantity with a small cost and showed the feasibility of a realtime measurement.

  • PDF

Clinical Use of Shielding Block Correction factors (차폐블록보정인자의 임상적 응용)

  • 이정옥;정동혁
    • Progress in Medical Physics
    • /
    • v.14 no.2
    • /
    • pp.69-73
    • /
    • 2003
  • In this study, we measured shielding block correction factors for irregular fields and compared them with published data for the square blocked field. We devised a methods to measure the factors at an arbitrary depth in phantom. The measurements were performed for 12 shielding blocks used in radiation therapy. The measured correction factors for irregular blocked fields were consistent within $\pm$0.5% with those of the square blocked fields. Our results show that the shielding block correction factors for the typical square blocked fields can be used in clinical dose calculations for irregular blocked fields. However, for small fields, we suggest that verification be done by measurement.

  • PDF

Planning of the Blind Position Considering Thermal Performance in the Intermediate Space of Double-Skin Facade

  • Choi Dong-Hee;Jo Jae-Hun;Seok Ho-Tae;Yeo Myoung-Souk;Kim Kwang-Woo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.2
    • /
    • pp.57-65
    • /
    • 2006
  • The blinds in the intermediate space are installed to block the direct solar radiation. As the blind divides the airflow of intermediate space into two parts, thermal performance of Double-Skin Facade(DSF) is affected by the blind position. Therefore the blind position should be planned with careful consideration in order to maximize the thermal performance of DSF. In this study, CFD was performed to analyze the effect of blind position in multistory-type DSF in variation of other DSF elements. The simulation results showed that the case with narrow depth of intermediate space and outlet on upper side of outer-facade, it is profitable to place blind as close as possible to the outer facade. In the other cases, the blind should maintain 0.15m distance from outer facade.

Analysis of Particle Rearrangement during Sintering by Micro Focus Computed Tomography $({\mu}CT)$

  • Nothe, M.;Schulze, M.;Grupp, R.;Kieback, B.;Haibel, A.;Banhart, J.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.808-809
    • /
    • 2006
  • The decrease of the distance between particle centers due to the growth of the sinter necks can be explained by the well known two-particle model. Unfortunately this model fails to provide a comprehensive description of the processes for 3D specimens. Furthermore, there is a significant discrepancy between the calculated and the measured shrinkage because particle rearrangements are not considered. Only the recently developed analysis of the particle movements inside of 3D specimens using micro focus computed tomography $({\mu}CT)$, combined with photogrammetric image analysis, can deliver the necessary experimental data to improve existing sintering theories. In this work, ${\mu}CT$ analysis was applied to spherical copper powders. Based on photogrammetric image analysis, it is possible to determine the positions of all particle centers for tracking the particles over the entire sintering process and to follow the formation and breaking of the particle bonds. In this paper, we present an in-depth analysis of the obtained data. In the future, high resolution synchrotron radiation tomography will be utilized to obtain in-situ data and images of higher resolution.

  • PDF

Improvement of Beam-Quality Evaluation Method for Medical Linear Accelerator Using Magnetic Field

  • Kim, Jeongho;Han, Manseok;Yoo, Sejong;Kim, Kijin;Cho, Jae-Hwan
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.120-128
    • /
    • 2015
  • Beam-quality of medical linac evaluations vary by diverse factors. Because conventional beam-quality evaluation methods yield fragmentary results, a new beam-evaluation method is suggested, and its feasibility is evaluated. The PDDs (percentage depth doses) of 6 MV (Mega-voltage) and 10 MV photon, R (Range) of a 6 MeV (Mega Electron-voltage) and 9 MeV electron were measured and compared with the conventional evaluation methods, and the improved methods $PDD^{10}{_5}$, $PDD^{20}{_{10}}$, $PDD^{30}{_{20}}$, $PDD^{20}{_5}$, $PDD^{30}{_{10}}$, and $R^{70}{_{50}}$, $R^{50}{_{30}}$, $R^{70}{_{30}}$ as the magnetic field of the bending magnet was changed to +2% to -2%, and the results were compared. The comparison showed that the improved methods exhibit a higher discrimination than the conventional methods in each energy regime. $PDD^{10}{_5}$, $PDD^{30}{_{20}}$, $PDD^{30}{_{10}}$ and $R^{70}{_{50}}$, $R^{50}{_{30}}$ should be applied. These methods exhibit a higher discrimination in each energy regime than conventional beam-quality evaluation methods; therefore, they should be used for beam-quality evaluation according to the magnetic field variation.

Analysis of Three-dimensional Earthquake Responses of a Floating Offshores Structure with an Axisymmetric Floating Structure (축대칭 부유구조물을 가지는 부유식 해양구조물의 3차원 지진응답 해석기법 개발)

  • Lee, Jin Ho;Kim, Jae Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.145-159
    • /
    • 2015
  • A seismic response analysis method for three-dimensional floating offshore structures due to seaquakes is developed. The hydrodynamic pressure exerted on the structure is calculated taking into account the compressibility of the sea water, the fluid-structure interaction, the energy absorption by the seabed, and the energy radiation into infinity. To validate developed method, the hydrodynamic pressure induced by the vibration of a floating massless rigid circular disk is calculated and compared with an exact analytical solution. The developed method is applied to seismic analysis of a support structure for a floating offshore wind turbine subjected to the hydrodynamic pressures induced from a seaquake. Analysis results show that earthquake response of a floating offshore structure can be greatly influenced by the compressibility of fluid, the depth (natural frequencies) of the fluid domain, and the energy absorption capacity of the seabed.