• Title/Summary/Keyword: depth of slope failure

Search Result 97, Processing Time 0.028 seconds

Permeability Coefficient of Unsaturated Soil in Steep Slope Failure Area (붕괴가 발생한 급경사지의 현장 투수계수)

  • Choi, Eun-Kyeong;Kim, Sung-Wook;Park, Dug-Keun;Oh, Jeong-Rim
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.921-926
    • /
    • 2010
  • To examine saturation characteristics of an unsaturated soil in the steep slope area with collapse, it separated dry season from rainy season and measured water content and permeability, and measured permeability by using a tension infiltrometer in the site. In addition, it conducted electrical resistivity survey to look into thickness of ground and geological structure of underground. The collapsed slope increased depth of weathered zone compared to upper slope, and there electrical resistivity anomalous zone caused by the filtrated underground water was observed. The permeability of the collapsed area was observed high compared to upper and lower slopes of retarding basin without collapse, and the permeability measured by dividing the dry season and rainy season was measured high in case of dry season.

  • PDF

Analysis of Steep slope Disaster Sites using Geographic Information System (GIS를 활용한 급경사지 재해현장 분석 -전북 무주군, 장수군, 진안군 중심으로-)

  • Lee, Min-Seok;Oh, Jeong-Rim;Park, Dug-Keun;Kim, Man-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.940-945
    • /
    • 2010
  • There are human casualties that caused by slope-stability related disasters such as landslide and debris flow during typhoon and rainy season every year in Korea. These disaster sites can be analyzed systematically using digital topographic data and aerial photogrammetry. In this study, geographical factors such as slope degree, geology, height, and soil depth are analyzed in four landslide-disaster sites from Muju, Jinan, and Jangsu County based on digital elevation maps generated by ArcGIS. Each site showed different characteristics in geology and geography and it is found that GIS can be utilized for the visualization of steep-slope failure areas.

  • PDF

Stability Analysis of the Unsaturated Infinite Slope Considering Suction Stress under Steady Infiltration Condition (정상침투조건에서 흡입응력을 고려한 불포화 무한사면의 안정해석)

  • Song, Young-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.9
    • /
    • pp.5-15
    • /
    • 2013
  • In this paper, the unsaturated slope stability analysis considering suction stress (Lu and Godt, 2008) was introduced and the results applied for a certain sand slope were analyzed. The unsaturated slope stability analysis considering suction stress can analyze both conditions of steady infiltration and no infiltration, and it can estimate the safety factor of slope as a function of soil depth. Also, the influence of weathering phenomenon at a certain depth from the ground surface can be considered. The stability analysis considering suction stress was applied to the unsaturated infinite slope composed of sand with the relative density of 60%. The suction stress under no infiltration condition was affected by ground water table until a certain influencing depth. However, the suction stress under steady infiltration condition was affected by seepage throughout the soils. Especially, the maximum suction stress was displayed around ground surface. The factor of safety in the infinite slope under no infiltration condition rapidly increased and decreased within the influence zone of ground water table. As a result of slope stability analysis, the factor of safety is less than 1 at the depth of 2.4 m below the ground surface. It means that the probability of slope failure is too high within the range of depths. The factor of safety under steady infiltration condition is greater than that under no infiltration condition due to the change of suction stress induced by seepage. As the steady infiltration rate of precipitation was getting closer to the saturated hydraulic conductivity, the factor of safety decreased. In case of the steady infiltration rate of precipitation with $-1.8{\times}10^{-3}cm/s$, the factor of safety is less than 1 at the depths between 0.2 m and 3 m below the ground surface. It means that the probability of slope failure is too high within the range of depths, and type of slope failure is likely to be shallow landslides.

Estimation of Slope Behavior by Soil Temperature (지중온도에 의한 사면의 거동 예측)

  • 장기태;한희수;유병선
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.407-418
    • /
    • 2003
  • It is necessary, in the light of the importance of long-term slope stability problem, to develop a simple method or tool which can figure out the possible failure surface resulting from weathering effect and other factors. The FBG(Fiber Bragg Crating) sensor system is used to estimate the correlations between the soil temperature and the slope behavior, and to find a failure surface in slopes effectively. This research is to seek for the correlation between the soil temperature distribution and the strain distribution of the reinforcing materials in an active zone by analyzing the data from the in-situ measurement so that the possible failure surface should be well defined based on the correlation. The zone of high temperature fluctuation can be regarded as one of the possible failure surface due to the weathering effect while the constant temperature depth of the ground, if exists, would not be relatively affected by the weathering process.

Design of Absorption Pipe for Slope Stability (사면안정을 위한 지중 흡수관의 설계)

  • Cho, Hong-Je;Moon, Jong-Kyu;Lee, Kwang-Je
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.11
    • /
    • pp.75-87
    • /
    • 2010
  • Incessant rainfalls in unsaturated soil raises pore water pressure and drops shear stress. Controlling pore water pressure in unsaturated soil prevents pressure increase and leads to slope stability. Laboratory experiment of pore water absorption in soil tank has been conducted for pore pressure decrease in soil slope under artifical rainfall supplied in varying rainfall indensities. Soil slope failure triggers the deepening of the wetting front to critical depth accompanied by decrease in matric suction induced by water infilteration. This paper addresses an experimental design for absorption pipe to prevent pore pressure increase in unsaturated soil slope from heavy rain. It is expected that absorption pipe will be widely used in unsaturated soil slope to strengthen slope stability.

A Study on Analytical Solution of Unsaturated Infinite Slope Stability (불포화 무한사면 안전율의 수정방정식에 대한 연구)

  • Chae, Yu-Mi;Kim, Jae-Hong;Jeong, Young-Hun;Kim, Tae-Heon
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.4
    • /
    • pp.5-11
    • /
    • 2018
  • In conventional analytical solutions for rainfall-induced soil slope stability, the Green-Ampt (1911) equation for estimating the saturation depth and the Skempton & DeLory (1957) equation for calculating the infinite slope shallow failure were compared with the numerical analysis to confirm the error. In the simple evaluation of the reason of soil slope instability due to rainfall using the conventional equations, there are many errors and, overestimation or underestimation of the calculation results. In this study, the equation consisting of the results obtained from infiltration analysis on unsaturated soil slope is proposed by applying the average range of the strength parameters of the granite weathered soils, and its reliability is verified by comparing with the numerical analysis results. The developed equation can be used easily in various fields for the estimation of slope safety factor by checking the rainfall duration and saturation depth.

Three-dimensional simplified slope stability analysis by hybrid-type penalty method

  • Yamaguchi, Kiyomichi;Takeuchi, Norio;Hamasaki, Eisaku
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.947-955
    • /
    • 2018
  • In this study, we propose a three-dimensional simplified slope stability analysis using a hybrid-type penalty method (HPM). In this method, a solid element obtained by the HPM is applied to a column that divides the slope into a lattice. Therefore, it can obtain a safety factor in the same way as simplified methods on the slip surface. Furthermore, it can obtain results (displacement and strain) that cannot be obtained by conventional limit equilibrium methods such as the Hovland method. The continuity condition of displacement between adjacent columns and between elements for each depth is considered to incorporate a penalty function and the relative displacement. For a slip surface between the bottom surface and the boundary condition to express the slip of slope, we introduce a penalty function based on the Mohr-Coulomb failure criterion. To compute the state of the slip surface, an r-min method is used in the load incremental method. Using the result of the simple three-dimensional slope stability analysis, we obtain a safety factor that is the same as the conventional method. Furthermore, the movement of the slope was calculated quantitatively and qualitatively because the displacement and strain of each element are obtained.

Scouring Characteristics at the Toe of the Rubble Mound Breakwater (사석방파제 toe부에서의 세굴특성에 관한 연구)

  • 윤한삼;남인식;류청로
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.7-12
    • /
    • 2002
  • This study is aimed to find the scouring mechanism at the toe of rubble mound structures. To investigate the characteristics of scouring in front of the structure, experiments were performed with regular waves in a 2-D flume. The results of this study are as follows. 1) It can be said the characteristics of incident wave causes rolling and sliding of armour block. The difference of wave pressure on the slope, internal flow as well as settlement of armour block due to the weight cause scouring. 2) It is observed that scouring depth at the toe increased when wave height or period increased. The location of ultimate scouring and deposition depth moved seaward when wave period increased. 3) The failure of rubble mound structure was caused by waves or scouring. Failure by erosion increased with high waves and long waves. 4) Using surf-similarity parameter including characteristics of incident waves and structure, scouring and deposition pattern were found and their limit was formulated.

Stability Analysis of Excavation Slope on Soft Ground (연약지반 굴착사면의 안정해석)

  • Kang, Yea Mook;Cho, Jae Hong;Kim, Yong Seong;Kim, Ji Hoon
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.1
    • /
    • pp.25-38
    • /
    • 1996
  • To investigate the stability problem of irrigation-drainage channel excavation slope on soft ground, analyzed the behavior of the soft ground with excavation slope by the limit equilibrium method and the finite element method, and compared with field tests. The results of this study were summarized as follows; 1. When rapid drawdown the water level, the crack was occurred by the effect of the excess pore water pressure, and the pore water pressure was decreased slowly. 2. As the width of excavation was larger, the crack width was larger. And, excavated depth was deeper, the progressive failure was appeared. 3. When the soft ground excavation was small-scale, the minimum safety factor was more effected by cohesion(1.0, 1.5, 2.0, 2.5, 3.0) than excavated slope inclination(1:l, 1:1.5, 1:2). 4. As excavation was progressed, the settlement occurred on the top-slope due to plastic domain, and heaving was occurred at the bottom of excavation. 5. The maximum shear stress was appeared greatly as the base part of slope went down. Because of the increase of the maximum shear stress, tension area occurred and local failure possibility was increased. 6. As the excavation depth was increased, the maximum shear strain was appeared greatly at the base of slope and distribution pattern was concentrated beneath the middle of slope.

  • PDF

Stability Investigation of the Large Size Heap of Coal Associated Wastes (석탄광산에서 발생된 대규모 폐광석 더미에 대한 안정성 검토)

  • Kang Gi-Chun;Ahn Nam-Kyu;Oh Je-Ill;Kim Tae-Hyung
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.133-144
    • /
    • 2005
  • Stability investigations were conducted for the heap of coal associated wastes occurred from D mine located in Gang-Won Province from the geotechnical and environmental engineering aspect, and a countermeasure was also examined to increase the stability in this area. Quality of water flowed from the heap of coal associated wastes was identified as Am. Slope stability investigations were conducted with both circular failure analyses using SLOPILE program and planar failure analyses in cases of dry, rainy, and ordinary slopes. The results of circular failure analyses indicated that the factor of safety is 0.78 for rainy case. for planar failure analyses, the factor of safety decreases with increase the depth and reaches below 1 about 4m depth for rainy case. A retaining wall system with backfill using the recycled-concrete aggregates as a practical scheme was suggested to satisfy both demands: reducing Am generation, and enhancing slope stability in the deposits of coal associated wastes.