• Title/Summary/Keyword: depth image based rendering

Search Result 96, Processing Time 0.025 seconds

An Efficient z-Buffer Algorithm using Temporal Coherence (시간 일관성을 이용한 효율적인 z-버퍼 알고리즘)

  • Oh, Kyung-Su;Shin, Yeong-Gil;Shin, Byeong-Seok
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.1
    • /
    • pp.13-22
    • /
    • 2000
  • We present a method that enhances the rendering speed of z-buffer algorithm using temporal coherence between two contiguous frames on fixed viewing conditions. Conventional z-buffer algorithm stores depth value for each pixel on a view plane while rendering some polygons, then it determines the visibility of the remaining polygons based on the stored depth values. If we can get color and depth information for some polygons without rendering, it is possible to generate an image by rendering only the remaining ones. In case of high frame rate, we can find the fact that sets of static polygons of the two contiguous frames are almost the same. This temporal coherence enables us to get the color and depth information of static polygons efficiently. Our algorithm stores color and depth information of static polygons and reuses it for generating the next frame. This method can be easily implemented since it does not require complex data structure and modification for conventional z-buffer algorithm. Also it is adequate for hardware implementation.

  • PDF

View Synthesis Using OpenGL for Multi-viewpoint 3D TV (다시점 3차원 방송을 위한 OpenGL을 이용하는 중간영상 생성)

  • Lee, Hyun-Jung;Hur, Nam-Ho;Seo, Yong-Duek
    • Journal of Broadcast Engineering
    • /
    • v.11 no.4 s.33
    • /
    • pp.507-520
    • /
    • 2006
  • In this paper, we propose an application of OpenGL functions for novel view synthesis from multi-view images and depth maps. While image based rendering has been meant to generate synthetic images by processing the camera view with a graphic engine, little has been known about how to apply the given images and depth information to the graphic engine and render the scene. This paper presents an efficient way of constructing a 3D space with camera parameters, reconstructing the 3D scene with color and depth images, and synthesizing virtual views in real-time as well as their depth images.

Visibility Method for Transparent Splats on Depth Image Based Rendering (깊이 기반 3차원 영상 렌더링에서 투명한 스플랫을 사용한 가시성 기법)

  • Suh, Mo-Young;Chung, Woo-Nam;Han, Tack-Don
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11a
    • /
    • pp.706-708
    • /
    • 2005
  • 본 논문에서는 투명한 스플랫을 사용한 깊이 기반의 3차원 이미지(Depth image based 3D rendered image) 렌더링에서의 가시성 기법을 제시한다. 이는 기존의 두 개의 패스로 이루어지는 가시성 기법을 z-버퍼 알고리즘과 변화된 McMillan's 알고리즘을 사용하여 하나의 패스로 구성함으로써 성능을 향상시켰다. 또한 스플랫의 순서에 따라 올바르지 않은 기준설정으로 인해 발생하는 화질의 문제점을 McMillan's 알고리즘을 수정함으로써 해결하였다.

  • PDF

A New Watermarking Algorithm for 3D Stereoscopic Image based on Depth and texture images (깊이 및 텍스쳐 영상 기반의 3D 입체 영상을 위한 워터마킹 알고리즘)

  • Seo, Young-Ho;Kim, Bo-Ra;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.551-561
    • /
    • 2014
  • Since the depth and texture images have been widely used for generating 3-dimensional stereoscopic image, the security of them have been focused. In this paper, we propose a new watermarking technique for copyright of stereo and multiview images which is generated in an arbitrary viewpoint by depth and texture image. After the mark space is selected for preserving watermark through DIBR (depth-image-based rendering) process which uses 3D warping, the texture image is transformed to the frequency coefficient using 2D DCT (discrete cosine transform). Some parts of them are quantized, which is the corresponding process to watermarking. The embedded watermark is not conformed by eyes, so we identified the invisibility of the proposed method. In case of appling attacks of general image process, we also identified the robustness of it.

Group-based Adaptive Rendering for 6DoF Immersive Video Streaming (6DoF 몰입형 비디오 스트리밍을 위한 그룹 분할 기반 적응적 렌더링 기법)

  • Lee, Soonbin;Jeong, Jong-Beom;Ryu, Eun-Seok
    • Journal of Broadcast Engineering
    • /
    • v.27 no.2
    • /
    • pp.216-227
    • /
    • 2022
  • The MPEG-I (Immersive) group is working on a standardization project for immersive video that provides 6 degrees of freedom (6DoF). The MPEG Immersion Video (MIV) standard technology is intended to provide limited 6DoF based on depth map-based image rendering (DIBR) technique. Many efficient coding methods have been suggested for MIV, but efficient transmission strategies have received little attention in MPEG-I. This paper proposes group-based adaptive rendering method for immersive video streaming. Each group can be transmitted independently using group-based encoding, enabling adaptive transmission depending on the user's viewport. In the rendering process, the proposed method derives weights of group for view synthesis and allocate high quality bitstream according to a given viewport. The proposed method is implemented through the Test Model for Immersive Video (TMIV) test model. The proposed method demonstrates 17.0% Bjontegaard-delta rate (BD-rate) savings on the peak signalto-noise ratio (PSNR) and 14.6% on the Immersive Video PSNR(IV-PSNR) in terms of various end-to-end evaluation metrics in the experiment.

Efficient Haptic Interaction for Highly Complex Object Generated by Point-based Surfaces (점 기반 곡면으로 이루어진 복잡한 가상 물체와의 효율적인 햅틱 상호작용)

  • Lee, Beom-Chan;Kim, Duck-Bong;Park, Hye-Shin;Kim, Jong-Phil;Lee, Kwan-Heng;Ryu, Je-Ha
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.70-75
    • /
    • 2007
  • 본 논문은 연결정보(connectivity) 및 미리 계산된 계층적 데이터 구조(hierarchical data structure)를 이용하지 않는 그래픽 및 햅틱 렌더링 알고리즘을 제안한다. 제안된 알고리즘은 점 기반 그래픽 표현(point-based graphic representation) 기법을 이용하여 3차원 자유 곡면을 생성한다. 생성된 점 기반 곡면 물체와의 햅틱 상호작용을 위해 그래픽 하드웨어(GPU)에 접근하여 점 기반 곡면에서 생성된 깊이 이미지(depth image)를 이용하여 햅틱 상호작용에 필수 요소인 충돌검출(collision detection) 및 반력 연산(contact force computation)을 수행한다.

  • PDF

Hole-Filling Method based on Depth-Incorporated Image Inpainting (깊이도를 고려한 인페인팅기반 홀필링 기법)

  • Choi, Jangwon;Choe, Yoonsik;Kim, Yong-Goo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.517-519
    • /
    • 2011
  • 본 논문에서는 DIBR(Depth image-based rendering)을 통해 생성되는 3D 영상의 홀을 고품질로 채우는 방법을 제안한다. 이를 위해, 생성된 영상의 깊이도를 고려한 희소성(Sparsity) 기반의 인페인팅 알고리즘을 홀 채우기에 적용하였다. 본 논문에서 제안하는 알고리즘은 홀 주변의 전경 텍스쳐를 제외한 배경 텍스쳐 정보만을 이용하기 때문에, 홀 채우기 시 전경 텍스쳐와 배경 텍스쳐가 혼합되는 문제점이 발생하지 않는다. 또한 희소성 기반의 인페인팅을 이용하기 때문에 에지 정보를 활용한 고품질의 홀 채우기가 가능하다. 본 논문에서 제안하는 알고리즘과 기존의 홀 채우기 알고리즘과의 주관적 화질 비교 결과, 본 논문에서 제안하는 알고리즘의 우수성을 확인할 수 있었다.

  • PDF

Fast Mode Decision For Depth Video Coding Based On Depth Segmentation

  • Wang, Yequn;Peng, Zongju;Jiang, Gangyi;Yu, Mei;Shao, Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.4
    • /
    • pp.1128-1139
    • /
    • 2012
  • With the development of three-dimensional display and related technologies, depth video coding becomes a new topic and attracts great attention from industries and research institutes. Because (1) the depth video is not a sequence of images for final viewing by end users but an aid for rendering, and (2) depth video is simpler than the corresponding color video, fast algorithm for depth video is necessary and possible to reduce the computational burden of the encoder. This paper proposes a fast mode decision algorithm for depth video coding based on depth segmentation. Firstly, based on depth perception, the depth video is segmented into three regions: edge, foreground and background. Then, different mode candidates are searched to decide the encoding macroblock mode. Finally, encoding time, bit rate and video quality of virtual view of the proposed algorithm are tested. Experimental results show that the proposed algorithm save encoding time ranging from 82.49% to 93.21% with negligible quality degradation of rendered virtual view image and bit rate increment.

Depth-map Preprocessing Algorithm Using Two Step Boundary Detection for Boundary Noise Removal (경계 잡음 제거를 위한 2단계 경계 탐색 기반의 깊이지도 전처리 알고리즘)

  • Pak, Young-Gil;Kim, Jun-Ho;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.12
    • /
    • pp.555-564
    • /
    • 2014
  • The boundary noise in image syntheses using DIBR consists of noisy pixels that are separated from foreground objects into background region. It is generated mainly by edge misalignment between the reference image and depth map or blurred edge in the reference image. Since hole areas are generally filled with neighboring pixels, boundary noise adjacent to the hole is the main cause of quality degradation in synthesized images. To solve this problem, a new boundary noise removal algorithm using a preprocessing of the depth map is proposed in this paper. The most common way to eliminate boundary noise caused by boundary misalignment is to modify depth map so that the boundary of the depth map can be matched to that of the reference image. Most conventional methods, however, show poor performances of boundary detection especially in blurred edge, because they are based on a simple boundary search algorithm which exploits signal gradient. In the proposed method, a two-step hierarchical approach for boundary detection is adopted which enables effective boundary detection between the transition and background regions. Experimental results show that the proposed method outperforms conventional ones subjectively and objectively.

A Depth-based Disocclusion Filling Method for Virtual Viewpoint Image Synthesis (가상 시점 영상 합성을 위한 깊이 기반 가려짐 영역 메움법)

  • Ahn, Il-Koo;Kim, Chang-Ick
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.48-60
    • /
    • 2011
  • Nowadays, the 3D community is actively researching on 3D imaging and free-viewpoint video (FVV). The free-viewpoint rendering in multi-view video, virtually move through the scenes in order to create different viewpoints, has become a popular topic in 3D research that can lead to various applications. However, there are restrictions of cost-effectiveness and occupying large bandwidth in video transmission. An alternative to solve this problem is to generate virtual views using a single texture image and a corresponding depth image. A critical issue on generating virtual views is that the regions occluded by the foreground (FG) objects in the original views may become visible in the synthesized views. Filling this disocclusions (holes) in a visually plausible manner determines the quality of synthesis results. In this paper, a new approach for handling disocclusions using depth based inpainting algorithm in synthesized views is presented. Patch based non-parametric texture synthesis which shows excellent performance has two critical elements: determining where to fill first and determining what patch to be copied. In this work, a noise-robust filling priority using the structure tensor of Hessian matrix is proposed. Moreover, a patch matching algorithm excluding foreground region using depth map and considering epipolar line is proposed. Superiority of the proposed method over the existing methods is proved by comparing the experimental results.