• 제목/요약/키워드: depth effect

검색결과 4,318건 처리시간 0.027초

Estimation of Depth Effect on the Bending Strength of Domestic Japanese Larch Structural Lumber using Weibull Weakest Link Theory

  • Oh, Sei Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권2호
    • /
    • pp.112-118
    • /
    • 2014
  • The depth effect on bending strength of Japanese larch structural lumber was investigated by using the published data of two different depth lumbers with the same length. Depth effect parameters were derived from Weibull's weakest link theory and compared to the results from other researches. Depth effect on bending strength was significant for No.1 and No.3 lumber, but not insignificant for No.2 lumber. Calculated value of the depth effect adjustment factors was 0.21, 0.11 and 0.22 by lumber grade, respectively. These results were similar to those results from previous researches and supported depth effect on bending strength of lumber. An apparent depth adjustment factor has been proposed to 0.2 in the literatures. Based on this study, depth adjustment factor was considered to 0.2 as a conservative optimum design value that should be incorporated in domestic building code (KBC) for structural lumber.

부재의 깊이가 콘크리트의 휨압축강도에 미치는 영향 (Effects of Specimen Depth on Flexural Compressive Strength of Concrete)

  • 이성태;김진근;김장호
    • 콘크리트학회논문집
    • /
    • 제12권5호
    • /
    • pp.121-130
    • /
    • 2000
  • Currently, in evaluating a flexural strength of a concrete member, the effect of specimen depth has not been systematically studied, even though its effect on ultimate strength of a section is very important. For all types of loading conditions, the trend is that the strength of a member tends to decrease when the member depth increases. In this study, the influence of specimen depth on flexural compressive strength of concrete member was examined experimentally. A series of C-shaped specimens subjected to axial compressive force and bending moment were tested using three geometrically similar specimens with different length-to depth ratios (h/c = 1, 2 and 4) which have compressive strength of 55 MPa. The results indicate that the flexural compressive strength decreased as the specimen depth increased. A model equation was derived based on regression analyses of the experimental data. Also, the results show that ultimate strain decreases as the specimen depth increases. Finally, a general model equation for the depth effect is proposed.

The Impact of Water Depth and Speed on Lower Muscles Activation During Exercise in Different Aquatic Environments

  • Gyu-sun, Moon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권2호
    • /
    • pp.169-178
    • /
    • 2024
  • This study aimed to investigate the effects of water depth and speed on the activation of lower muscles during squat exercises, utilizing electromyography(EMG). It involved ten male participants in there. Participants performed 30 squats over a minute at a speed of 60bpm and maximum speed squats until exhaustion within a minute. The Integrated electromyography(iEMG) readings for the rectus femoris showed statistically significant differences due to water depth and speed, with a significant interaction effect between depth and speed during squat exercises. The iEMG readings for the biceps femoris also showed statistically significant differences, with a significant interaction effect between depth and speed during squat exercises. The iEMG readings for the gastrocnemius showed statistically significant differences according to water depth and speed. However, the interaction effect of water depth and speed during squat exercises did not show a statistically significant difference. In contrast, the iEMG readings for the tibialis anterior demonstrated statistically significant differences, with a statistically significant interaction effect during squats. These findings suggest that water depth and speed positively influence the activation patterns of lower muscles. Therefore, appropriately tailored aquatic exercises based on water depth for individuals with musculoskeletal discomfort, including the elderly or those with physical impairments, can effectively reduce physical strain and enhance balance, as well as physical and perceptual aspects. It is concluded that such exercises could provide a safer and more effective method of exercise compared to ground-based alternatives.

회전방향과 깊이 지각에서의 양안부등과 Pulfrich 효과의 상호작용 (Interaction of Binocular Disparity and Pulfrich Effect in the Perception of Rotation Direction and Depth of a Transparent Rotating Cylinder)

  • 이형철
    • 인지과학
    • /
    • 제16권4호
    • /
    • pp.243-254
    • /
    • 2005
  • Pulfrich 효과는 운동정보를 처리하는 기제가 깊이정보도 처리할 가능성을 시사하는데, 다양한 신경생리학적 결과들이 이러한 가능성을 지지한다. 대표적인 깊이정보인 양안부등을 처리하는 기제가 Pulfrich 효과도 처리할 것이라는 가능성이 제기되어 왔지만, 두 가지 정보원이 하나의 자극 내에 공존하는 경우에 두 정보원의 상호작용 특성을 규명하기 위한 정신물리학적 연구는 없었다. 본 연구는 양안부등과 Pulfrich 효과를 이용하여 회전하는 무선점 반투명 원통체의 회전반향과 깊이를 일관되게 (일치조건) 또는 일관되지 않게 정의하는 조건 (불일치 조건)에서의 원통체의 지각된 깊이와 회전방향을 측정하였다. 일치조건에서 지각된 원통체의 깊이는 양안부등 또는 Pulfrich효과 단독에 의하여 정의된 원통체의 지각된 깊이보다 컸다. 흥미롭게도 불일치 조건에서 원통체의 지각된 회전방향은 양안부둥과 Pulfrich효과의 상대적인 강도에 의하여 조절되었다. 이러한 실험결과는 양안부등과 Pulfrich효과가 하나의 처리기제를 공유함을 함의한다.

  • PDF

콘크리트의 휨압축강도에 미치는 부재깊이의 영향 (Effects of Specimen Depth on Flexural Compressive Strength of Concrete)

  • 이성태;김진근;이윤;김장호;양은익
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.115-120
    • /
    • 2000
  • Currently, in evaluating a flexural strength of a concrete member, the effect of specimen depth has not been systematically studied, even though its effect on ultimate strength of a section is very important. For all types of loading conditions, the trend is that the strength of a member tends to decrease when the member depth increases. In this study, the influence of specimen depth on flexural compressive strength of concrete member was examined experimentally. A series of C-shaped specimens subjected to axial compressive force and bending moment were tested using three geometrically similar specimens with different length-to-depth ratios(h/c=1, 2 and 4) which have compressive strength of 55MPa. The results indicate that the flexural compressive strength decreased as the specimen depth increased. A model equation was derived based on regression analyses of the experimental data. Also the results show that ultimate strain decreases as the specimen depth increases. Finally, a general model equation for the depth effect is proposed.

  • PDF

건축공간(建築空間) 구성(構成)에 있어서 시각적(視覺的) 깊이의 활용(活用)에 관(關)한 연구(硏究) (A Study on the Application of Visual Depth In Aspects of the Spatial Organization of Architecture)

  • 백민석
    • 한국디지털건축인테리어학회논문집
    • /
    • 제3권1호
    • /
    • pp.1-8
    • /
    • 2003
  • Perceiving the depth of space in the spatial organization of architecture is perceiving spaces as well three dimensions as the fourth dimensions -perceive the time-. Physical depth in architectural space differs from perceptional depth in aspects of not only dimension but also perceptional effects. In this study, the perceptional depth is defined as visual depth and physical depth is depth of space. These purposes of this study are classifying the perceptional effects of visual depth -visual access, sense of variety, dynamic and cubic effect... - and the methods of spatial composition which causes visual depth in architectural space.

  • PDF

140 keV 감마선 차폐 시 납 차폐체 두께에 따른 깊이별 선량 평가 (Shielding 140 keV Gamma Ray Evaluation of Dose by Depth According to Thickness of Lead Shield)

  • 김지영;이왕희;안성민
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제41권2호
    • /
    • pp.129-134
    • /
    • 2018
  • The present study made a phantom for gamma ray of 140 keV radiated from $^{99m}Tc$, examined shielding effect of lead by thickness of the shielding material, and measured surface dose and depth dose by body depth. The OSL Nano Dot dosimeter was inserted at 0, 3, 15, 40, 90, and 180 mm depths of the phantom, and when there was no shield, 0.2 mm lead shield, 0.5 mm lead shield, The depth dose was measured. Experimental results show that the total cumulative dose of dosimeters with depth is highest at 366.24 uSv without shield and lowest at 94.12 uSv with 0.5 mm lead shield. The shielding effect of 0.2 mm lead shielding was about 30.18% and the shielding effect of 0.5 mm lead shielding was 74.30%, when the total sum of the accumulated doses of radiation dosimeter was 100%. The phantom depth and depth dose measurements showed the highest values at 0 mm depth for all three experiments and the dose decreases as the depth increases. This study proved that the thicker a shielding material, the highest its shielding effect is against gamma ray of 140 keV. However, it was known that shielding material can't completely shield a body from gamma ray; it reached deep part of a human body. Aside from the International Commission on Radiation Units and Measurements (ICRU) recommending depth dose by 10 mm in thickness, a plan is necessary for employees working in department of nuclear medicine where they deal with gamma ray, which is highly penetrable, to measure depth dose by body depth, which can help them manage exposed dose properly.

Effect of Free Surface Based on Submergence Depth of Underwater Vehicle

  • Youn, Taek-Geun;Kim, Min-Jae;Kim, Moon-Chan;Kang, Jin-Gu
    • 한국해양공학회지
    • /
    • 제36권2호
    • /
    • pp.83-90
    • /
    • 2022
  • This paper presents the minimum submergence depth of an underwater vehicle that can remove the effect of free surface on the resistance of the underwater vehicle. The total resistance of the underwater vehicle in fully submerged modes comprises only viscous pressure and friction resistances, and no wave resistance should be present, based on the free surface effect. In a model test performed in this study, the resistance is measured in the range of 2 to 10 kn (1.03-5.14 m/s) under depth conditions of 850 mm (2.6D) and 1250 mm (3.8D), respectively, and the residual resistance coefficients are compared. Subsequently, resistance analysis is performed via computational fluid dynamics (CFD) simulation to investigate the free surface effect based on various submergence depths. First, the numerical analysis results in the absence of free surface conditions and the model test results are compared to show the tendency of the resistance coefficients and the reliability of the CFD simulation results. Subsequently, numerical analysis results of submergence depth presented in a reference paper are compared with the model test results. These two sets of results confirm that the resistance increased due to the free surface effect as the high speed and depth approach the free surface. Therefore, to identify a fully submerged depth that is not affected by the free surface effect, case studies for various depths are conducted via numerical analysis, and a correlation for the fully submerged depth based on the Froude number of an underwater vehicle is derived.

Depth perception enhancement based on chromostereopsis in a 3D display

  • Hong, JiYoung;Lee, HoYoung;Park, DuSik;Kim, ChangYeong
    • Journal of Information Display
    • /
    • 제13권3호
    • /
    • pp.101-106
    • /
    • 2012
  • This study was conducted to enhance the cubic effect by representing an image with a sense of three-dimensional (3D) depth, using chromostereopsis, among the characteristics of human visual perception. An algorithm that enhances the cubic effect, based on the theory that the cubic effect of the chromostereoptic effect and the chromostereoptic reversal effect depends on the lightness of the background, classifies the layers of the 3D image input into the foreground, middle, and background layers according to the depth of the image input. It suits the characteristics of human visual perception because it controls the color factor that was adaptively detected through experiments on each layer; and it can achieve an enhanced cubic effect that is suitable for the characteristics of the image input.

단일 영상에서 디포커스 맵을 활용한 보케 효과 알고리즘 (Bokeh Effect Algorithm using Defocus Map in Single Image)

  • 이용환;김흥준
    • 반도체디스플레이기술학회지
    • /
    • 제21권3호
    • /
    • pp.87-91
    • /
    • 2022
  • Bokeh effect is a stylistic technique that can produce blurring the background of photos. This paper implements to produce a bokeh effect with a single image by post processing. Generating depth map is a key process of bokeh effect, and depth map is an image that contains information relating to the distance of the surfaces of scene objects from a viewpoint. First, this work presents algorithms to determine the depth map from a single input image. Then, we obtain a sparse defocus map with gradient ratio from input image and blurred image. Defocus map is obtained by propagating threshold values from edges using matting Laplacian. Finally, we obtain the blurred image on foreground and background segmentation with bokeh effect achieved. With the experimental results, an efficient image processing method with bokeh effect applied using a single image is presented.