• Title/Summary/Keyword: denture base abrasion

Search Result 9, Processing Time 0.024 seconds

AN EXPERIMENTAL STUDY OF THE BOND STRENGTH OF DENTURE TEETH BONDED TO DENTURE BASE MATERIALS (의치용 인공치아와 의치상용 레진간의 결합강도에 관한 실험적 연구)

  • Lee, Joo-Hee;Kim, Chang-Whe;Kim, Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.3
    • /
    • pp.464-474
    • /
    • 1996
  • A principal advantage of a plastic tooth over a porcelain tooth should be its ability to bond to the denture base material. But plastic teeth could craze and wear easily, so more abrasion resistant plastic denture teeth have been developed. To resist abrasion, the degree of cross-linking was increased, but bonding to denture base meterial became more difficult. The purpose of this study was to evaluate the bond strength of plastic teeth and abrasion resistant teeth bonded to heat-curing, self-curing and light-curing denture base material. Denture tooth molds were chosen that had a>8mm diameter. The denture teeth was bonded to three denture base materials and then machined to the same dimensions. Three denture base materials were used as control groups. Prior to tensile testing, the specimens were thermocycled between $5^{\circ}C\;and\;55^{\circ}C$ for 1000cycles. Tensile testing was performed on an Instron Universal testing mechine. Experimental group ; plastic teeth(Justi Imperial)+heat-curing resin(Lucitone 199) plastic teeth(Justi Imperial)+light-curing resin(Triad) plastic teeth(Justi Imperial)+self-curing resin(Vertex SC) abrasion resistant teeth(IPN)+heat-curing resin(Lucitone 199) abrasion resistant teeth(IPN)+light-curing resin(Triad) abrasion resistant teeth(IPN)+self-curing resin(Vertex SC) Control group ; heat-curing resin(Lucitone 199) light-curing resin (Triad) self-curing resin(Vertex SC). The results were as follows : 1. The denture teeth bonded to heat-curing resin showed the cohesive failure and those bonded to the other resins showed adhesive failure. 2. Tensile bond strength of the plastic teeth bonded to self-curing resin was not significantly greater than bonded to light-curing resin(p>0.05). 3. Tensile bond strength of the abrasion resistant teeth bonded to self-curing resin was not significantly greater than bonded to light-curing resin(p>0.05). 4. Tensile bond strength of the plastic teeth to self-curing resin was not significantly different from that of the abrasion-resistant teeth(p>0.05). 5. Tensile bond strength of the plastic teeth to light-curing resin was significantly greater than that of the abrasion resistant teeth(p<0.01).

  • PDF

ABRASION RESISTANCE OF DENTURE BASE RESIN INCLUDING VINYLOLIGOSILSESQUIOXANE (Vinyloligosilsesquioxane 함유 의치상용 아크릴릭 레진의 마모 저항성)

  • Park Ran;Shim June-Sung;Han Dong-Hoo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.5
    • /
    • pp.626-639
    • /
    • 2003
  • Statement of problem : Recently, in attempts to reinforce the acrylic resin and to reduce the polymerization shrinkage, it has been reported that adding vinyloligo-silsesquioxane (vinyl-POSS) to PMMA significantly compensates for polymerization shrinkage and somewhat increases the fracture resistance. Purpose : There haven't been any studies on abrasion that can affect the adaptation of the denture in long-term use. In this study abrasion resistance was compared between acrylic resin with vinyl-POSS and commercialized acrylic resin for denture base. In addition, the difference in abrasion resistance according to molding methods was compared. Material and method : Using PaladentR 20 including vinyl-POSS. PaladentR 20, Lucitone 199R, SR IvocapR, denture bases were fabricated using compression molding technique and continuous-pressure injection technique. Surface hardness and abrasion were measured for each group, and the worn surfaces were observed under a scanning electron microscope. Results : 1. When surface hardness was measured for each material and molding technique, there was no statistically significant difference among the materials. (p<0.05) 2. When same denture base material and molding technique were used, the abrasion due to toothpaste solution was 5 times as severe as the abrasion due to soap solution. 3, When toothpaste solution was used, the abrasion decreased in the order of PaladentR20, PaladentR 20 including vinyl-POSS, SR IvocapR, and Lucitone 199R. However statistically significant difference was seen only among PaladentR 20, SR IvocapR, and Lucitone 199R. (p<0.05). 4. When soap solution was used, the abrasion was more severe in PaladentR 20 and including vinyl-POSS PaladentR 20 groups than in SR IvocapR and Lucitone 199R groups. (p<0.05). Conclusion : Addition of vinyl-POSS doesn't improve the abrasion resistance, and the abrasion resistance was similar to those of existing materials. Additional studies under different conditions are needed. For clinical application of vinyl-POSS, further investigations with different requirements and conditions are necessary.

Evaluation of abrasion for non-abrasive denture cleanser

  • Lee, Sang-Min;Min, Ji-Hyun;Choi, Jong-Hoon
    • Journal of Korean society of Dental Hygiene
    • /
    • v.21 no.2
    • /
    • pp.99-107
    • /
    • 2021
  • Objectives: To compare and evaluate the degree of abrasion of the denture base resin according to the type of denture cleansers. Methods: Denture base resin specimens were prepared and dried. The resin specimens were installed in the automatic brushing machine so that the toothbrush weighed 200 g. The brushing was performed 1,000 times each, a total of 10,000 times using (1) distilled water (DW), (2) non-abrasive cleanser (NAC), and (3) toothpaste (TP), respectively. Thirty specimens were allocated for each group. The thickness of abrasion by brushing was calculated by converting the weight of the specimen. Results: In all DW, NAC, and TP groups, significant differences were found in the average amount of abrasion of the resin specimen due to 1,000 to 10,000 brushings (p<0.001). The average abrasion amount of the resin specimen due to brushing 10,000 times was 2.31±1.20 ㎛ in DW group, 2.52±0.25 ㎛ in NAC group, 6.50±0.60 ㎛ in TP group, and the amount of abrasion in the TP group was statistically significant compared to other groups (p<0.001). Conclusions: The use of TP is not recommended as a method for maintaining the longevity of dentures and for oral health, and NAC was considered to be possible to be used as a denture cleanser because it had a similar amount of abrasion of that of DW.

Shear bond strength between CAD/CAM denture base resin and denture artificial teeth when bonded with resin cement

  • Han, Sang Yeon;Moon, Yun-Hee;Lee, Jonghyuk
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.5
    • /
    • pp.251-258
    • /
    • 2020
  • PURPOSE. The bond strengths between resin denture teeth with various compositions and denture base resins including conventional and CAD/CAM purposed materials were evaluated to find influence of each material. MATERIALS AND METHODS. Cylindrical rods (6.0 mm diameter × 8.0 mm length) prepared from pre-polymerized CAD/CAM denture base resin blocks (PMMA Block-pink; Huge Dental Material, Vipi Block-Pink; Vipi Industria) were bonded to the basal surface of resin teeth from three different companies (VITA MFT®; VITA Zahnfabrik, Endura Posterio®; SHOFU Dental, Duracross Physio®; Nissin Dental Products Inc.) using resin cement (Super-Bond C&B; SUN MEDICAL). As a control group, rods from a conventional heat-polymerizing denture base resin (Vertex™ Rapid Simplified; Vertex-Dental B.V. Co.) were attached to the resin teeth using the conventional flasking and curing method. Furthermore, the effect of air abrasion was studied with the highly cross-linked resin teeth (VITA MFT®) groups. The shear bond strengths were measured, and then the fractured surfaces were examined to analyze the mode of failure. RESULTS. The shear bond strengths of the conventional heat-polymerizing PMMA denture resin group and the CAD/CAM denture base resin groups were similar. Air abrasion to VITA MFT® did not improve shear bond strengths. Interfacial failure was the dominant cause of failure for all specimens. CONCLUSION. Shear bond strengths of CAD/CAM denture base materials and resin denture teeth using resin cement are comparable to those of conventional methods.

Peel strength of denture liner to PMMA and polyamide: laser versus air-abrasion

  • Korkmaz, Fatih Mehmet;Bagis, Bora;Ozcan, Mutlu;Durkan, Rukiye;Turgut, Sedanur;Ates, Sabit Melih
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.287-295
    • /
    • 2013
  • PURPOSE. This study investigated the effect of laser parameters and air-abrasion on the peel strength of silicon-based soft denture liner to different denture resins. MATERIALS AND METHODS. Specimens (N=180) were prepared out of three different denture base resins (Rodex, cross-linked denture base acrylic resin; Paladent, heat-cured acrylic resin; Deflex, Polyamide resin) ($75mm{\times}25mm{\times}3mm$). A silicon-based soft denture liner (Molloplast B) was applied to the denture resins after the following conditioning methods: a) Air-abrasion ($50{\mu}m$), b) Er,Cr:YSGG laser (Waterlase MD Turbo, Biolase Technology) at 2 W-20 Hz, c) Er,Cr:YSGG laser at 2 W-30 Hz, d) Er,Cr:YSGG laser at 3 W-20 Hz, e) Er,Cr:YSGG laser at 3 W-30 Hz. Non-conditioned group acted as the control group. Peel test was performed in a universal testing machine. Failure modes were evaluated visually. Data were analyzed using two-way ANOVA and Tukey's test (${\alpha}$=.05). RESULTS. Denture liner tested showed increased peel strength after laser treatment with different parameters ($3.9{\pm}0.4-5.58{\pm}0.6$ MPa) compared to the control ($3.64{\pm}0.5-4.58{\pm}0.5$ MPa) and air-abraded groups ($3.1{\pm}0.6-4.46{\pm}0.3$ MPa), but the results were not statistically significant except for Paladent, with the pretreatment of Er,Cr:YSGG laser at 3 W-20 Hz. Polyamide resin after air-abrasion showed significantly lower peel strength than those of other groups ($3.1{\pm}0.6$ MPa). CONCLUSION. Heat-cured acrylic resin, PMMA, may benefit from Er,Cr:YSGG laser treatment at 3 W-20 Hz irradiation. Air-abrasion of polyamide resins should be avoided not to impair their peel bond strengths to silicon-based soft denture liners.

STRENGTH OF GLASS FIBER REINFORCED PMMA RESIN AND SURFACE ROUGHNESS CHANGE AFTER ABRASION TEST

  • Lee, Sang-Il;Kim, Chang-Whe;Lim, Young-Jun;Kim, Myung-Joo;Yun, Suk-Dae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.3
    • /
    • pp.310-320
    • /
    • 2007
  • Statement of the problem. The fracture of acrylic resin dentures remains an unsolved problem. Therefore, many investigations have been performed and various approaches to strengthening acrylic resin, for example, the reinforcement of heat-cured acrylic resin using glass fibers, have been suggested over the years. But problems such as poor workability, rough surface, poor adhesion of glass fiber resin complex are not solved yet. Purpose. The aim of the present study was to investigate the effect of short glass fibers on the transverse strength of heat-polymerized denture base acrylic resin and roughness of resin complex after abrasion test. Material and methods. To avoid fiber bunching and achieve even fiber distribution, glass fiber bundles were mixed with acrylic resin powder in conventional mixer with a non-cutting blade, to produce the glass fiber($10{\mu}m$ diameter, 3mm length, silane treated) resin composite. Glass fibers were incorporated at 0%, 3%, 6% and 9% by weight. Transverse strength were measured. After abrasion test, surface roughness was evaluated and scanning electron microscope view was taken for clinical application. Results. 1. 6% and 9% incorporation of 3mm glass fibers in the acrylic resin enhanced the transverse strength of the test specimens(p<0.05). 2. Before abrasion test, incorporation of 0%, 3%, 9% glass fiber in the resin showed no dirrerence in roughness statisticaly(p>0.05). 3. After abrasion test, incorporation of 0%, 3%, 6% glass fiber in the resin showed same surface roughness value statistically(p>0.05). 4. In SEM, surface roughness increased as the percentage of the fibers increased. 5. In the areas where glass fiber bunchings are formated, a remarkably high roughness was noticed. Conclusion. 6% and 9% addition of silane-treated short glass fibers into denture base acrylic resin increased transverse strength significantly. Before and after abrasion test, incorporation of 0%, 3%, 6% glass fiber in the resin showed same surface roughness value statistically.

Surface changes of denture base resin according to two toothpastes and a kitchen detergent (일부 세치제와 주방세제 사용에 의한 의치상 레진의 표면변화)

  • Kang, Jae-Kyoung;Kim, Soo-Hwa;Yoo, Eun-Mi;Choi, Hye-Sook;Choi, Yu-Ri;Kim, Kwang-Mahn
    • Journal of Korean society of Dental Hygiene
    • /
    • v.12 no.3
    • /
    • pp.611-620
    • /
    • 2012
  • Objectives : This study evaluated the changes in surface roughness of denture base resin according to the types of denture cleansers. Methods : A denture base resin(Vertex RS, Dentimax, Netherland) was used. Two toothpaste(Antiplaque, Bukwang, Korea; 2080, Aekyung, Korea) and a kitchen detergent(Trio, Aekyung, Korea) were used as a denture cleanser. The specimens were put on the V8 crossbrushing machine(Sabri enterprises, Downers grove, IL, USA) to reproduce toothbrushing and the toothbrushes were flat, round end and soft type. The surfaces of denture base resin specimens were observed by profilometer(SJ-400, MITUTOYO, Japan) and SEM(S-3000N, Hitachi Co., Ibaraki, Japan). Results : 1. According to the result of measuring surface roughness, there was statistically significant difference in Ra, Rq, and Rz(p<0.05). 2. As for Ra, Rq and Rz, Antiplaque toothpaste showed the highest roughness, and there was significant difference from other groups(p<0.01). 2080 toothpaste, Trio, and distilled water were classified as the same group. 3. According to the result of observation with the SEM, the surfaces of the Antiplaque toothpaste group after toothbrushing showed the greatest roughness, and the surfaces of 2080 toothpaste, Trio, and distilled water groups were rough in order. Trio and distilled water had the surfaces similar to those before toothbrushing. Conclusions : Studies to compare the efficacy of denture management methods and examine the effects of denture cleansers on denture materials will be helpful for dental hygienists and dentists providing patients with proper information and education. And it will be also useful for denture users' oral health.

Mandibular implant-natural tooth retained overdenture using magnetic attachment with stress breaker (하악에서 완압형 자성 어태치먼트를 부착한 임플란트-자연치 피개 의치: 10년 증례보고)

  • Park, Eun-Chul;Lee, Su-Yeon;Kim, Hee-Jung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.31 no.4
    • /
    • pp.378-386
    • /
    • 2015
  • Overdenture has the advantage of improving the stability and retention of the denture but the abutment may be easily affected by caries or periodontal disease and the thin denture can be easily broken. The magnetic attachment overdenture has a high vertical retention but a low horizontal retention, thus, exerting a less disruptive force to the abutment or implant and shows less abrasion or damage compared to other mechanical retainers. Denture fractures in overdenture is caused by the thin denture base as the attachment is inserted, but it may also be caused by the difference in detrusion between soft tissue and hard tissue, and between an implant and a natural tooth. To compensate this shortcoming, a magnetic attachment with a silicone ball inserted in the magnet was developed as we report a successful case using this specific type of magnetic attachment overdenture.

A study of the tensile bond strength between Polyetherketoneketone (PEKK) and various veneered denture base resin (Polyetherketoneketone (PEKK)과 다양한 의치상용 전장 레진 간의 인장결합강도에 관한 연구)

  • Park, Yeon-Hee;Seo, Jae-Min;Lee, Jung-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.3
    • /
    • pp.231-238
    • /
    • 2022
  • Purpose. This study aimed to investigate the effect of different veneering methods on the tensile bond strength between polyetherketoneketone (PEKK) and denture base resins. Materials and methods. A total of 80 PEKK T-shaped specimens were fabricated and the primer (Visio.link) was applied after airborne-particle abrasion with 110 ㎛ alumina oxide powder. According to the veneering method, the specimens were divided into four groups (n = 20) to be veneered with the gingival colored packable photopolymerized composite resin (SR Adoro); flowable photopolymerized composite resin, (Crea.lign); heat-polymerized resin (Vertex); and self-polymerized resin (ProBase Cold). Each group was divided into two subgroups (n = 10) according to the artificial thermal aging. After the tensile bond strength measurement via universal testing machine, the fracture sections of all specimens were observed. Two-way ANOVA and Tukey's HSD post hoc test were used for the statistical analysis (α = .05). Results. The results of the two-way ANOVA showed statistically significant differences in the tensile bond strength according to the veneering method and artificial thermal aging of denture base resins (P<.001). The highest tensile bond strength showed in the packable photopolymerized resin group before and after the artificial thermal aging. The lowest tensile bond strength showed in the heat-polymerized resin group. The mixed and adhesive fracture showed in all groups. Conclusion. The veneering method and artificial thermal aging can influence in the tensile bond strength between the resin and PEKK. The artificial thermal aging can reduce the tensile bond strength.