• Title/Summary/Keyword: density distribution method

Search Result 1,189, Processing Time 0.029 seconds

Distribution of Irregular Wave Height in Finite Water Depth (유한수심에서의 불규칙파의 파고 분포)

  • 안경모;마이클오찌
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.1
    • /
    • pp.88-93
    • /
    • 1994
  • This study is concerned with an analytic derivation of the probability density function applicable for wave heights in finite water depth using two different methods. As the first method of the study, a probability density function is developed by applying a series of polynomials which is orthogonal with respect to Rayleigh probability density function. The newly derived probability density function is compared with the histogram constructed from wave data obtained in finite water depth which indicate strong non-Gaussian characteristics. Although the probability density represents the histogram very well. it has negative density at large values. Although the magnitude of the negative density is small. it negates the use of the distribution function fer estimating extreme values. As the second method of the study, a probability density function of wave height is developed by applying the maximum entropy method. The probability density function thusly derived agrees very well with the wave height distribution in shallow water, and appears to be useful in estimating extreme values and statistical properties of wave heights in finite water depth. However, a functional relationship between the probability distribution and the non-Gaussian characteristics of the data cannot be obtained by applying the maximum entropy method.

  • PDF

Optimal Topoloty Design of Structures and Ribs Using Density Distribution (밀도 분포를 이용한 구조물 및 리브의 최적 위상 설계)

  • Chung, Jinpyung;Lee, Kunwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.7
    • /
    • pp.66-77
    • /
    • 1996
  • Optimal topology design is to search the optimal configuration of a structure which can be used as a shape at the conceptual design stage. Our objective is to maximize the stiffness of the structures and ribs under a material usage constraintl. The density of each finite element is the design variable and its relationship with Young's modulus is expressed by quadratic form. The configuration is represented by the entire density distribution, the structural analysis is performed by finite element method and the optimiza- tion is performed by Feasible Direction Method. Feasible Direction Method can handle various problems simultaneously, that is, mult-objectives and multi-constraints. Total computation time can be reduced by the quadratic relationship between the density and the material property and fewer design variables than Homogenization Method. Toplogy optimization technique developed in this research is applied to design the shapes of the ribs.

  • PDF

Assessment of soil density and distribution coefficient of Cs-137 for deriving DCGLs in korea research reactor unit 1 and 2

  • Geun-Ho Kim;Ilgook Kim;Kwang Pyo Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2452-2457
    • /
    • 2024
  • To obtain site-specific values of the Derived Concentration Guideline Levels (DCGLs) for decommissioning of KRR-1&2, the soil density and distribution coefficient values for Cs-137, a major contaminant radionuclide, were determined. The soil density was evaluated according to the test method established by the Korean Agency for Technology and Standards of the Ministry of Trade, Industry, and Energy (KATS). The distribution coefficient was evaluated using a batch test. The validity of using the evaluated soil density and distribution coefficient as site-specific values was assessed through radiation dose assessment reflecting these values. Average soil density value obtained was 1.738 g/cm3, which was within the typical range of normal soil density, 1.0-1.8 g/cm3. The average distribution coefficient value was 7,754 mL/g. Applying the maximum, average, and minimum values of the evaluated soil density and distribution coefficient showed similar radiation dose results, thus suggesting that it is reasonable to use the average values of each parameter as site-specific values. Findings of this study can help determine DCGLs that reflect the characteristics of the research reactor site.

Determination of the Distribution of the Preisach Density Function With Optimization Algorithm

  • Hong Sun-Ki;Koh Chang Seop
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.258-261
    • /
    • 2005
  • The Preisach model needs a distribution function or Everett function to simulate the hysteresis phenomena. To obtain these functions, many experimental data obtained from the first order transition curves are usually required. In this paper, a simple procedure to determine the Preisach density function using the Gaussian distribution function and genetic algorithm is proposed. The Preisach density function for the interaction field axis is known to have Gaussian distribution. To determine the density and distribution, genetic algorithm is adopted to decide the Gaussian parameters. With this method, just basic data like the initial magnetization curve or saturation curves are enough to get the agreeable density function. The results are compared with experimental data and we got good agreements comparing the simulation results with the experiment ones.

A Study on the characteristics of Electron Energy Distribution function of the Radio-Frequency Inductively Coupled Plasma (고주파 유도결합 플라즈마의 전자에너지 분포함수 특성에 관한 연구)

  • 황동원;하장호;전용우;최상태;이광식;박원주;이동인
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.131-133
    • /
    • 1998
  • Electron temperature, electron density and electron energy distribution function were measured in Radio-Frequency Inductively Coupled Plasma(RFICP) using a probe method. Measurements were conducted in argon discharge for pressure from 10 mTorr to 40 mTorr and input rF power from 100W to 600W and flow rate from 3 sccm to 12 sccm. Spatial distribution of electron temperature, electron density and electron energy distribution function were measured for discharge with same aspect ratio (R/L=2). Electron temperature was found to depend on pressure, but only weakly on power. Electron density and electron energy distribution function strongly depended on both pressure and power. Electron density and electron energy distribution function increased with increasing flow rate. Radial distribution of the electron density and electron energy distribution function were peaked in the plasma center. Normal distribution of the electron density, electron energy distribution function were peaked in the center between quartz plate and substrate. These results were compared to a simple model of ICP, finally, we found out the generation mechanism of Radio-Frequency Inductively Coupled Plasma.

  • PDF

Plasma Density Measurement of the Hg-Ar(1Torr) by LIF Method (LIF를 이용한 Hg-Ar(1Torr)의 플라즈마 밀도 측정)

  • Lee Jong-Chan;Park Dae-Hee;Yang Jong-Kyung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.5
    • /
    • pp.213-217
    • /
    • 2005
  • In this paper, we introduced a LIF measurement method and summarized the theoretical side. When an altered wavelength of laser and electric power, lamp applied electric power, we measured the relative density of the metastable state in mercury after observing a laser induced fluorescence signal of 404.8nm and 546.2nm, and confirmed the horizontal distribution of plasma density in the discharge lamp. Due to this generation, the extinction of atoms in a metastable state occurred through collision, ionization, and excitation between plasma particles. The density and distribution of the metastable state depended on the energy and density of plasma particles, intensely This highlights the importance of measuring density distribution in plasma electric discharge mechanism study The results confirmed the resonance phenomenon regarding the energy level of atoms along a wavelength change, and also confirmed that the largest fluorescent signal in 436nm, and that the density of atoms in 546.2nm ($6^3S_1 {\to} 6^3P_2$ ) were larger than 404.8nm ($6^3S_1 {\to} 6^3P_1$). According to the increase of lamp applied electric power, plasma density increased, too. When increased with laser electric power, the LIF signal reached a saturation state in more than 2.6mJ. When partial plasma density distribution along a horizontal axis was measured using the laser induced fluorescence method, the density decreased by recombination away from the center.

Plasma Density Measurement of Hg-Ar by LIF Method (LIF를 이용한 Hg-Ar의 플라즈마 밀도 측정)

  • Choi, Yong-Sung;Hwang, Jong-Sun;Park, Kye-Choon;Song, Min-Jong;Kim, Hyeong-Gohn;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.27-32
    • /
    • 2006
  • In this paper, we introduced a LIF measurement method and summarized the theoretical side. When an altered wavelength of laser and electric power, lamp applied electric power, we measured the relative density of the metastable state in mercury after observing a laser induced fluorescence signal of 404.8nm and 546.2nm, and confirmed the horizontal distribution of plasma density in the discharge lamp. Due to this generation, the extinction of atoms in a metastable state occurred through collision, ionization, and excitation between plasma particles. The density and distribution of the metastable state depended on the energy and density of plasma particles, intensely. This highlights the importance of measuring density distribution in plasma electric discharge mechanism study. The results confirmed the resonance phenomenon regarding the energy level of atoms along a wavelength change, and also confirmed that the largest fluorcscent signal in 436nm, and that the density of atoms in 546.2nm ($6^3S_1{\rightarrow}6^3P_2$) were larger than 404.8nm ($6^3S_1{\rightarrow}6^3P_2$). According to the increase of lamp applied electric power, plasma density increased, too. When increased with laser electric power, the LIF signal reached a saturation state in more than 2.6mJ. When partial plasma density distribution along a horizontal axis was measured using the laser induced fluorescence method, the density decreased by recombination away from the center.

  • PDF

Estimation of Non-Gaussian Probability Density by Dynamic Bayesian Networks

  • Cho, Hyun-C.;Fadali, Sami M.;Lee, Kwon-S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.408-413
    • /
    • 2005
  • A new methodology for discrete non-Gaussian probability density estimation is investigated in this paper based on a dynamic Bayesian network (DBN) and kernel functions. The estimator consists of a DBN in which the transition distribution is represented with kernel functions. The estimator parameters are determined through a recursive learning algorithm according to the maximum likelihood (ML) scheme. A discrete-type Poisson distribution is generated in a simulation experiment to evaluate the proposed method. In addition, an unknown probability density generated by nonlinear transformation of a Poisson random variable is simulated. Computer simulations numerically demonstrate that the method successfully estimates the unknown probability distribution function (PDF).

  • PDF

Determination of Energy Distribution of Interface State Density in the MNOS Memory Device (MNOS 기억소자의 계면상태밀도의 에너지 분포의 결정)

  • 한태현;강창수;박종하;서광열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1988.10a
    • /
    • pp.1-4
    • /
    • 1988
  • The high frequency and quasi-state C-V curves were measured to determine the interface state density in MNOS devices. Berglund method was appropriate for determination of energy distribution of interface state density all over the energy gap. Applying Vg vs Øs relation by Berlund method to comparison-analysis method of the high-frequency and quasi-static C-V curves, we were able to determine the energy distribution by only measured C-V curves without theoretical C-V curves. The interface state density near the conduction band was high at lower temperature than room temperature.

  • PDF

Assistant Model For Considering Slot-Opening Effect on No-load Air-gap Flux Density Distribution in Interior-type Permanent Magnet Motor (매입형 영구자석 전동기에서 무부하시 공극 자속밀도 분포에 대한 Slot-Opening Effect를 고려한 보조 모델)

  • Fang, Liang;Kim, Do-Jin;Hong, Jung-Pyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.759-765
    • /
    • 2011
  • This paper proposes an effective assistant model for considering the stator slot-opening effect on air gap flux density distribution in conventional interior-type permanent magnet (IPM) motor. Different from the conventional slot-opening effect analysis in surface-type PM (SPM) motor, a composite effect of slot-opening uniquely existing in IPM motor, which additionally causes enhancement of air gap flux density due to magnet flux path distortion in iron core between the buried PM and rotor surface. This phenomenon is represented by a proposed assistant model, which simply deals with this additional effect by modifying magnetic pole-arc using an effective method. The validity of this proposed analytical model is applied to predict the air gap flux density distribution in an IPM motor model and confirmed by finite element method (FEM).