• Title/Summary/Keyword: density curve

Search Result 790, Processing Time 0.026 seconds

Mixed mode I/II fracture criterion to anticipate behavior of the orthotropic materials

  • Farid, Hannaneh Manafi;Fakoor, Mahdi
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.671-679
    • /
    • 2020
  • The new energy-based criterion, named Reinforcement Strain Energy Density (ReiSED), is proposed to investigate the fracture behavior of the cracked orthotropic materials in which the crack is embedded in the matrix along the fibers. ReiSED is an extension of the well-known minimum strain energy density criterion. The concept of the reinforced isotropic solid as an advantageous model is the basis of the proposed mixed-mode I/II criterion. This model introduces fibers as reinforcements of the isotropic matrix in orthotropic materials. The effects of fibers are qualified by defining reinforcement coefficients at tension and shear modes. These coefficients, called Reduced Stress (ReSt), provide the possibility of encompassing the fiber fraction in a fracture criterion for the first time. Comparing ReiSED fracture limit curve with experimental data proves the high efficiency of this criterion to predict the fracture behavior of orthotropic materials.

Enhanced Spherical Indentation Techniques for Rubber Property Evaluation (향상된 구형압입 고무 물성평가법)

  • Hwang, Kyu-Min;Oh, Jopng-Soo;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1357-1365
    • /
    • 2009
  • In this study, we enhance the numerical approach of Lee et al.$^{(1)}$ to spherical indentation technique for property evaluation of hyper-elastic rubber. We first determine the friction coefficient between rubber and indenter in a practical viewpoint. We perform finite element numerical simulations for deeper indentation depth. An optimal data acquisition spot is selected, which features sufficiently large strain energy density and negligible frictional effect. We then improve two normalized functions mapping an indentation load vs. deflection curve into a strain energy density vs. first invariant curve, the latter of which in turn gives the Yeoh-model constants. The enhanced spherical indentation approach produces the rubber material properties with an average error of less than 3%.

RULED SURFACES IN E3 WITH DENSITY

  • Altin, Mustafa;Kazan, Ahmet;Karadag, H.Bayram
    • Honam Mathematical Journal
    • /
    • v.41 no.4
    • /
    • pp.683-695
    • /
    • 2019
  • In the present paper, we study curves in 𝔼3 with density $e^{ax^2+by^2}$, where a, b ∈ ℝ not all zero constants and give the parametric expressions of the curves with vanishing weighted curvature. Also, we create ruled surfaces whose base curves are the curve with vanishing weighted curvature and the ruling curves are Smarandache curves of this curve. Then, we give some characterizations about these ruled surfaces by obtaining the mean curvatures, Gaussian curvatures, distribution parameters and striction curves of them.

A Study on Uniformity of Current Distribution in Hull Cell (Hull Cell에서 전류분포의 균일화에 관한 연구)

  • 여운관
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.6
    • /
    • pp.340-346
    • /
    • 1994
  • The method of uniforming current distribution in Hull cell are studied by using auxiliary anode, current shield bipolar electrode, and combinings bipolar electrode with current shield in order to find a way of uni-form deposition. The current density distributions are measured by each ammeter of the same inner resistance connected to divided cathode pannel respectively. The current density distributions of cathode electrode divided into five sections with 5mm width have a tendency of linear inclination, and that of twenty sections have a tendency of smoother curve than the curve of original Hull cell pannel. Their results showed lower value on the high current density portion and higher value on the low portion than that original Hull cell pannel. The current distribution in Hull cell is able to unify by using auxiliary anode, or combining bipo-lar electrode with current shield, but not efficient in using one of both individually.

  • PDF

Friction Characteristics of Micro-scale Dimple Pattern under Mixed and Hydrodynamic Lubrication Condition (혼합 및 유체윤활하에서 Micro-Scale Dimple Pattern의 마찰특성)

  • Chae Young-Hun;Kim Seock-Sam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.188-193
    • /
    • 2005
  • Surface texturing of tribological application is another attractive technology of friction reducing. Also, reduction of friction is therefore considered to be a necessary requirement for improved efficiency of machine. In this paper attempts to investigate the effect of density for micro-scale dimple pattern on bearing steel flat mated with pin-on-disk. We demonstrated the lubrication mechanism for a Stribeck curve, which has a relationship between the friction coefficient and a dimensionless parameter for lubrication condition. It is found that friction coefficient is depended on the density of surface pattern. It was thus verified that micro-scale dimple could affect the friction reduction considerably under mixed and hydrodynamic lubrication conditions from based on friction map. Lubrication condition regime has an influence on the friction coefficient induced the density of micro dimple.

A Study on the Soil Water Characteristic Curve with Change of Coefficient of Uniform in Compacted Granitic Soils (다짐 화강풍화토의 균등계수 변화에 따른 함수특성곡선에 관한 연구)

  • Yoo, Kun-Sun;Kim, Doc-Kyoung;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.29 no.A
    • /
    • pp.145-153
    • /
    • 2009
  • In this study, to determine characteristics of compaction and the soil water characteristic curve(SWCC) in decomposed granitic soils, compaction tests and SWCC tests were carried out for samples having various contents of coefficient of uniform($c_u$), By compacting their samples with standard Proctor density test, the effects of binder contents on maximum dry density and optimum moisture content were investigated and compared. Samples compacted with the maximum dry density and the optimum moisture content were tested by means of the SWCC, to determine their SWCC parameters, such as Brooks & Corey(${\lambda}$, ${\Psi}_b$), Van Genuchten (${\alpha}$, n, m), Fredlund & Xing(a, n, m).

  • PDF

CAD Interface using Topology Optimization (위상최적설계 결과를 이용한 CAD 인터페이스)

  • Kim, Seong-Hoon;Min, Seung-Jae;Lee, Sang-Hun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.4
    • /
    • pp.281-289
    • /
    • 2009
  • Topology optimization has been widely used for the optimal structure design for weight reduction and high performance. Since the result of three-dimensional topology optimization is represented by the discrete material distribution in finite elements, it is hard to interpret from a design point of view. In this paper, the method for interpreting three-dimensional topology optimization resuIt into a series of cross-sectional curve representation is proposed and interfaced with the existing CAD system for the practical use. The concept of node density and virtual grid is introduced to transform element density values into grid density and material boundaries in each cross section are identified based on the element volume rate to satisfy the amount of material specified in the original design intent. Design exampIes show that three-dimensional topology result can be converted into a form of curve CAD model and the seamless interface with CAD software can be achieved.

The Evaluation of Dynamic Group Pile Effect in fine sand (가는 모래 지반에서의 말뚝의 동적 군말뚝 효과 분석)

  • Yoo, Min-Taek;Yang, Eui-Kyu;Kim, Hyun-Uk;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.877-883
    • /
    • 2009
  • Shaking table tests are performed to evaluate the dynamic group pile effect in fine sand. Single pile tests and $2{\times}4$ group pile tests are performed on 3D pile spacing. Dynamic p-y backbone curves are obtained to evaluate dynamic group pile effect by using dynamic p-y curve of single pile. And dynamic group pile p-multiplier is estimated by dynamic p-y backbone curve. Dynamic p-multiplier can be calculated by using subground reaction ratio of dynamic p-y backbone curve which is the same displacement of p-y curve peak point As the result, dynamic group pile effects are evaluated in terms of a shaking frequency, a shaking acceleration, and a relative density. Dynamic group pile p-multiplier is the largest at lead pile, and the value decrease at middle pile and trail pile. p multiplier increases as increasing input acceleration and decreasing relative density. This results coincide with NCHRP's research which suggest p multiplier increases as increasing pile cap displacement.

  • PDF

Materials Properties of Nickel Electrodeposits as a Function of the Current Density, Duty Cycle, Temperature and pH

  • Kim, Dong-Jin;Kim, Myung Jin;Kim, Joung Soo;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.168-172
    • /
    • 2006
  • Alloy 600 having a superior resistance to a corrosion is used as a steam generator tubing in nuclear power plants. In spite of its high corrosion resistance, there are many tubings which experience corrosion problems such as a SCC under the high temperature and high pressure environments of nuclear power plants. The Alloy 600 tubing can be repaired by using a Ni electroplating having an excellent SCC resistance. In order to carry out a successful Ni electrodeposition inside a steam generator tubing, the effects of various parameters on the material properties of the electrodeposit should be elucidated. Hence this work deals with the effects of an applied current density, duty cycle($T_{on}/(T_{on}+T_{off})$) of a pulse current, bath temperature and solution pH on the material properties of Ni electrodeposit obtained from a Ni sulphamate bath by analyzing the current efficiency, potentiodynamic curve, hardness and stress-strain curve. Hardness, YS(yield strength) and TS(tensile strength) decreased whereas the elongation increased as the applied current density increased. This was thought to be by a concentration depletion at the interface of the electrodeposit/solution, and a fractional decrease of the hydrogen reduction reaction. As the duty cycle increased, the hardness, YS and TS decreased while the elongation increased. During an off time at a high duty cycle, the concentration depletion could not be recovered sufficiently enough to induce a coarse grain sized electrodeposit. With an increase of the solution temperature and pH, the YS and TS increased while the elongation decreased. The experimental results of the hardness and the stress-strain curves can be supplemented by the results of the potentiodynamic curve.