DOI QR코드

DOI QR Code

Mixed mode I/II fracture criterion to anticipate behavior of the orthotropic materials

  • Received : 2019.04.04
  • Accepted : 2020.01.25
  • Published : 2020.03.10

Abstract

The new energy-based criterion, named Reinforcement Strain Energy Density (ReiSED), is proposed to investigate the fracture behavior of the cracked orthotropic materials in which the crack is embedded in the matrix along the fibers. ReiSED is an extension of the well-known minimum strain energy density criterion. The concept of the reinforced isotropic solid as an advantageous model is the basis of the proposed mixed-mode I/II criterion. This model introduces fibers as reinforcements of the isotropic matrix in orthotropic materials. The effects of fibers are qualified by defining reinforcement coefficients at tension and shear modes. These coefficients, called Reduced Stress (ReSt), provide the possibility of encompassing the fiber fraction in a fracture criterion for the first time. Comparing ReiSED fracture limit curve with experimental data proves the high efficiency of this criterion to predict the fracture behavior of orthotropic materials.

Keywords

Acknowledgement

Supported by : University of Tehran

The authors would like to acknowledge the financial support of University of Tehran for this research under Grant number 28686/01/01.

References

  1. Akbas, S.D. (2019), "Nonlinear behavior of fiber reinforced cracked composite beams", Steel Comp. Struct., 30(4), 327-336. https://doi.org/10.12989/scs.2019.30.4.327.
  2. Al-Fasih, M.Y., Kueh, A.B.H., Sabah, S.H. and Yahya, M.Y. (2018), "Tow waviness and anisotropy effects on Mode II fracture of triaxially woven composite", Steel Comp. Struct., 26(2), 241-253. https://doi.org/10.12989/scs.2018.26.2.241.
  3. Altunisik, A.C., Gunaydin, M., Sevim, B. and Adanur, S. (2017), "System identification of arch dam model strengthened with CFRP composite materials", Steel Compos. Struct., 25(2), 231-244. https://doi.org/10.12989/scs.2017.25.2.231.
  4. Anaraki, A.R.G. and Fakoor, M. (2010a), "General mixed mode I/II fracture criterion for wood considering T-stress effects", Mater. Design, 31(9), 4461-4469. https://doi.org/10.1016/j.matdes.2010.04.055.
  5. Anaraki, A.R.G. and Fakoor, M. (2011b), "A new mixed-mode fracture criterion for orthotropic materials, based on strength properties", J. Strain Anal. Eng. Des., 46(1), 33-44. https://doi.org/10.1243/03093247JSA667.
  6. Arouche, M.M., Wang, W., De Freitas, S.T. and De Barros, S. (2019), "Strain-based methodology for mixed-mode I+II fracture: A new partitioning method for bi-material adhesively bonded joints", J Adhes., 95(5-7), 385-404. https://doi.org/10.1080/00218464.2019.1565756.
  7. Baek, S.J., Kim, M.S., An, W.J. and Choi, J.H. (2019), "Defect detection of composite adhesive joints using electrical resistance method", Compos. Struct., 220, 179-184. https://doi.org/10.1016/j.compstruct.2019.03.081.
  8. Buczek, M.B. and Herakovich, C.T. (1985), "A normal stress criterion for crack extension direction in orthotropic composite materials", J. Compos. Mater., 19(6), 544-553. https://doi.org/10.1177/002199838501900606.
  9. Carloni, C. and Nobile, L. (2005), "Maximum circumferential stress criterion applied to orthotropic materials", Fatigue Fract. Eng. Mater. Struct., 28(9), 825-833. https://doi.org/10.1111/j.1460-2695.2005.00922.x.
  10. Chow, C.L. and Woo, C.W. (1979), "Orthotropic and mixed mode fracture in wood", Proceedings of the 1st international conference of wood fracture, Vancouver, Canada, August.
  11. Daneshjoo, Z., Shokrieh, M.M., Fakoor, M., Alderliesten, R. and Zarouchas, D. (2019), "Physics of delamination onset in unidirectional composite laminates under mixed-mode I/II loading", Eng. Fract. Mech., 211, 82-98. https://doi.org/10.1016/j.engfracmech.2019.02.013.
  12. Fakoor, M. (2017), "Augmented strain energy release rate (ASER): a novel approach for investigation of mixed-mode I/II fracture of composite materials", Eng. Fract. Mech., 179, 177-189. https://doi.org/10.1016/j.engfracmech.2017.04.049.
  13. Fakoor, M. and Farid, H.M. (2019), "Mixed-mode I/II fracture criterion for crack initiation assessment of composite materials", Acta Mech., 230(1), 281-301. https://doi.org/10.1007/s00707-018-2308-y.
  14. Fakoor M. and Khansari, N.M. (2016), "Mixed mode I/II fracture criterion for orthotropic materials based on damage zone properties", Eng. Fract. Mech., 153, 407-420. https://doi.org/10.1016/j.engfracmech.2015.11.018.
  15. Fakoor, M. and Rafiee, R. (2013), "Fracture investigation of wood under mixed mode I/II loading based on the maximum shear stress criterion", Strength Mater., 45(3), 378-385. https://doi.org/10.1007/s11223-013-9468-8.
  16. Fakoor, M., Rafiee, R. and Zare, S. (2019), "Equivalent reinforcement isotropic model for fracture investigation of orthotropic materials", Steel Compos. Struct., 30(1), 1-12. https://doi.org/10.12989/scs.2019.30.1.001.
  17. Fakoor, M. and Shokrollahi, M.S. (2018), "A new macro-mechanical approach for investigation of damage zone effects on mixed mode I/II fracture of orthotropic materials", Acta Mech., 229(8), 3537-3556. https://doi.org/10.1007/s00707-018-2132-4.
  18. Farid, H.M. and Fakoor, M. (2019), "Mixed mode I/II fracture criterion for arbitrary cracks in orthotropic materials considering T-stress effects", Theor. Appl. Fract. Mec., 99, 147-160. https://doi.org/10.1016/j.tafmec.2018.11.015.
  19. Gambarotta, L. and Lagomarsino, S. (1993), "A microcrack damage model for brittle materials", Int. J. Solids Stuct., 30(2), 177-198. https://doi.org/10.1016/0020-7683(93)90059-G.
  20. Golewski, G.L. (2017a), "Effect of fly ash addition on the fracture toughness of plain concrete at third model of fracture", J. Civ. Eng. Manag., 23(5), 613-620. https://doi.org/10.3846/13923730.2016.1217923.
  21. Golewski, G.L. (2017b), "Determination of fracture toughness in concretes containing siliceous fly ash during mode III loading", Struct. Eng. Mech., 62(1), 1-9. https://doi.org/10.12989/sem.2017.62.1.001.
  22. Golewski, G.L. (2017c), "Improvement of fracture toughness of green concrete as a result of addition of coal fly ash. Characterization of fly ash microstructure", Mater. Charact. 134, 335-346. https://doi.org/10.1016/j.matchar.2017.11.008.
  23. Golewski G.L. (2018), "An assessment of microcracks in the Interfacial Transition Zone of durable concrete composites with fly ash additives", Compos. Struct., 200, 515-520. https://doi.org/10.1016/j.compstruct.2018.05.144
  24. Golewski, G.L. (2019), "The influence of microcrack width on the mechanical parameters in concrete with the addition of fly ash: Consideration of technological and ecological benefits", Constr. Build. Mater., 197, 849-861. https://doi.org/10.1016/j.conbuildmat.2018.08.157.
  25. Golewski, G.L. and Sadowski, T. (2016a), "A Study of mode III fracture toughness in young and mature concrete with fly ash additive", Solid State Phenom., 254, 120-125. https://doi.org/10.4028/www.scientific.net/SSP.254.120.
  26. Golewski, G.L. and Sadowski, T. (2016b), "Macroscopic evaluation of fracture processes in Fly ash concrete", Solid State Phenom., 254, 188-193. https://doi.org/10.4028/www.scientific.net/SSP.254.188.
  27. Gowhari Anaraki A.R. and Fakoor, M. (2010b), "Mixed mode fracture criterion for wood based on a reinforcement microcrack damage model", Mater. Sci. Eng. A, 527(27-28), 7184-7191. tps://doi.org/10.1016/j.msea.2010.08.004.
  28. Jernkvist, L.O. (2001a), "Fracture of wood under mixed mode loading: I. Derivation of fracture criteria", Eng. Fract. Mech., 68(5), 549-563. https://doi.org/10.1016/S0013-7944(00)00127-2.
  29. Jernkvist, L.O. (2001b), "Fracture of wood under mixed mode loading: II. Experimental investigation of Picea abies", Eng. Fract. Mech., 68(5), 565-576. https://doi.org/10.1016/S0013-7944(00)00128-4.
  30. Kharazan, M., Sadr, M.H. and Kiani, M. (2014), "Delamination growth analysis in composite laminates subjected to low velocity impact", Steel Compos. Struct., 17(4), 387-403. https://doi.org/10.12989/scs.2014.17.4.387.
  31. Kupski, J., de Freitas, S.T., Zarouchas, D., Camanho, P.P. and Benedictus, R. (2019), "Composite layup effect on the failure mechanism of single lap bonded joints", Compos. Struct., 217, 14-26. https://doi.org/10.1016/j.compstruct.2019.02.093.
  32. Leicester, R.H. (1974), "Application of linear fracture mechanics in design of timber structures", Proceedings of the Conference of the Australian Fracture Group, Melbourne, Australia.
  33. Li, Y.D., Xiong, T. and Cai, Q.G. (2015), "Coupled interfacial imperfections and their effects on the fracture behavior of a layered multiferroic cylinder", Acta Mech., 226(4), 1183-1199. https://doi.org/10.1007/s00707-014-1246-6.
  34. Mall, S., Murphy, J.F. and Shottafer, J.E. (1983), "Criterion for mixed mode fracture in wood", J. Eng. Mech., 109(3), 680-690. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:3(680).
  35. Muralidhara, S., Prasad, B.R., Eskandari, H. and Karihaloo, B.L. (2010), "Fracture process zone size and true fracture energy of concrete using acoustic emission", Cnstr. Build. Mater., 24(4), 479-486. https://doi.org/10.1016/j.conbuildmat.2009.10.014.
  36. Nobile, L. and Carloni, C. (2005), "Fracture analysis for orthotropic cracked plates", Compos. Struct., 68(3), 285-293. https://doi.org/10.1016/j.compstruct.2004.03.020.
  37. Quade, D.J., Jana, S.C., Morscher, G.N., Kanaan, M. and McCorkle, L. (2019), "The effect of thin film adhesives on mode II inter-laminar fracture toughness in carbon fiber composites with shape memory alloy inserts", Mech. Mater., 131, 22-32. https://doi.org/10.1016/j.mechmat.2019.01.002.
  38. Rizov, V.I. (2017), "Non-linear study of mode II delamination fracture in functionally graded beams", Steel Compos. Struct., 23(3), 263-271. https://doi.org/10.12989/scs.2017.23.3.263.
  39. Romanowicz, M. and Seweryn, A. (2008), "Verification of a non-local stress criterion for mixed mode fracture in wood", Eng. Fract. Mech., 75(10), 3141-3160. https://doi.org/10.1016/j.engfracmech.2007.12.006.
  40. Saouma, V.E., Ayari, M.L. and Leavell, D.A. (1987), "Mixed mode crack propagation in homogeneous anisotropic solids", Eng. Fract. Mech., 27(2), 171-184. https://doi.org/10.1016/0013-7944(87)90166-4.
  41. Shahverdi, M., Vassilopoulos, A.P. and Keller, T. (2016), "Mixed-Mode I/II fracture behavior of asymmetric composite joints", Procedia Structural Integrity, 2, 1886-1893. https://doi.org/10.1016/j.prostr.2016.06.237
  42. Shan, M., Liu, F., Fang, Z., Zhao, L. and Zhang, J. (2018), "A bi-material property based FE modelling method for progressive damage analyses of composite double-lap bolted joints", Results in Physics, 11, 674-683. ttps://doi.org/10.1016/j.rinp.2018.10.018.
  43. Sih, G.C. (1974), "Strain-energy-density factor applied to mixed mode crack problems", Int. J. Fract., 10(3), 305-321. https://doi.org/10.1007/BF00035493.
  44. Sih, G.C., Paris, P.C. and Irwin G.R. (1965), "On cracks in rectilinearly anisotropic bodies", Int. J. Fract. Mech., 1(3), 189-203. https://doi.org/10.1007/BF00186854.
  45. Toribio, J. and Ayaso, F. J. (2003), "A fracture criterion for high-strength steel structural members containing notch-shape defects", Steel Compos. Struct., 3(4), 231-242. https://doi.org/10.12989/scs.2003.3.4.231.
  46. Van der Put, T.A.C.M. (2007), "A new fracture mechanics theory for orthotropic materials like wood", Eng. Fract. Mech., 74(5), 771-781. https://doi.org/10.1016/j.engfracmech.2006.06.015.
  47. Van der Put, T.A.C.M. (2015), "Exact failure criterion for wood: Theory extension and synthesis of all series A publications", Delft Wood Science Foundation Publication, Series, 1-ISSN 1871-675X,.
  48. Vasic, S. and Smith, I. (2002), "Bridging crack model for fracture of spruce", Eng. Fract. Mech., 69(6), 745-760. https://doi.org/10.1016/S0013-7944(01)00091-1.
  49. Vasic, S., Smith, I. and Landis, E. (2007), "Fracture zone characterization-Micro-mechanical study", Wood Fiber Sci, 34(1), 42-56.
  50. Wang, W., Fernandes, R.L., De Freitas, S.T., Zarouchas, D. and Benedictus, R. (2018), "How pure mode I can be obtained in bi-material bonded DCB joints: A longitudinal strain-based criterion", Compos. Part B: Eng., 153, 137-148. https://doi.org/10.1016/j.compositesb.2018.07.033.
  51. Williams, M.L. (1957), "On the stress distribution at the base of a stationary crack", J. Appl. Mech., 24(3), 109-114. https://doi.org/10.1115/1.4011454
  52. Williams, J.G. and Birch M.W. (1976), "Mixed mode fracture in anisotripic media", In Cracks and Fracture, ASTM STP, 125-137.
  53. Wu, E.M. (1967), "Application of fracture mechanics to anisotropic plates", J. Appl. Mech., 34(4), 967-974. https://doi.org/10.1115/1.3607864.
  54. Zhou, S., Yang, C., Tian, K., Wang, D., Sun, Y., Guo, L. and Zhang, J. (2019), "Progressive failure modelling of double-lap of composite bolted joints based on Puck's criterion", Eng. Fract. Mech., 206, 233-249. https://doi.org/10.1016/j.engfracmech.2018.11.038.