Acknowledgement
Supported by : University of Tehran
The authors would like to acknowledge the financial support of University of Tehran for this research under Grant number 28686/01/01.
References
- Akbas, S.D. (2019), "Nonlinear behavior of fiber reinforced cracked composite beams", Steel Comp. Struct., 30(4), 327-336. https://doi.org/10.12989/scs.2019.30.4.327.
- Al-Fasih, M.Y., Kueh, A.B.H., Sabah, S.H. and Yahya, M.Y. (2018), "Tow waviness and anisotropy effects on Mode II fracture of triaxially woven composite", Steel Comp. Struct., 26(2), 241-253. https://doi.org/10.12989/scs.2018.26.2.241.
- Altunisik, A.C., Gunaydin, M., Sevim, B. and Adanur, S. (2017), "System identification of arch dam model strengthened with CFRP composite materials", Steel Compos. Struct., 25(2), 231-244. https://doi.org/10.12989/scs.2017.25.2.231.
- Anaraki, A.R.G. and Fakoor, M. (2010a), "General mixed mode I/II fracture criterion for wood considering T-stress effects", Mater. Design, 31(9), 4461-4469. https://doi.org/10.1016/j.matdes.2010.04.055.
- Anaraki, A.R.G. and Fakoor, M. (2011b), "A new mixed-mode fracture criterion for orthotropic materials, based on strength properties", J. Strain Anal. Eng. Des., 46(1), 33-44. https://doi.org/10.1243/03093247JSA667.
- Arouche, M.M., Wang, W., De Freitas, S.T. and De Barros, S. (2019), "Strain-based methodology for mixed-mode I+II fracture: A new partitioning method for bi-material adhesively bonded joints", J Adhes., 95(5-7), 385-404. https://doi.org/10.1080/00218464.2019.1565756.
- Baek, S.J., Kim, M.S., An, W.J. and Choi, J.H. (2019), "Defect detection of composite adhesive joints using electrical resistance method", Compos. Struct., 220, 179-184. https://doi.org/10.1016/j.compstruct.2019.03.081.
- Buczek, M.B. and Herakovich, C.T. (1985), "A normal stress criterion for crack extension direction in orthotropic composite materials", J. Compos. Mater., 19(6), 544-553. https://doi.org/10.1177/002199838501900606.
- Carloni, C. and Nobile, L. (2005), "Maximum circumferential stress criterion applied to orthotropic materials", Fatigue Fract. Eng. Mater. Struct., 28(9), 825-833. https://doi.org/10.1111/j.1460-2695.2005.00922.x.
- Chow, C.L. and Woo, C.W. (1979), "Orthotropic and mixed mode fracture in wood", Proceedings of the 1st international conference of wood fracture, Vancouver, Canada, August.
- Daneshjoo, Z., Shokrieh, M.M., Fakoor, M., Alderliesten, R. and Zarouchas, D. (2019), "Physics of delamination onset in unidirectional composite laminates under mixed-mode I/II loading", Eng. Fract. Mech., 211, 82-98. https://doi.org/10.1016/j.engfracmech.2019.02.013.
- Fakoor, M. (2017), "Augmented strain energy release rate (ASER): a novel approach for investigation of mixed-mode I/II fracture of composite materials", Eng. Fract. Mech., 179, 177-189. https://doi.org/10.1016/j.engfracmech.2017.04.049.
- Fakoor, M. and Farid, H.M. (2019), "Mixed-mode I/II fracture criterion for crack initiation assessment of composite materials", Acta Mech., 230(1), 281-301. https://doi.org/10.1007/s00707-018-2308-y.
- Fakoor M. and Khansari, N.M. (2016), "Mixed mode I/II fracture criterion for orthotropic materials based on damage zone properties", Eng. Fract. Mech., 153, 407-420. https://doi.org/10.1016/j.engfracmech.2015.11.018.
- Fakoor, M. and Rafiee, R. (2013), "Fracture investigation of wood under mixed mode I/II loading based on the maximum shear stress criterion", Strength Mater., 45(3), 378-385. https://doi.org/10.1007/s11223-013-9468-8.
- Fakoor, M., Rafiee, R. and Zare, S. (2019), "Equivalent reinforcement isotropic model for fracture investigation of orthotropic materials", Steel Compos. Struct., 30(1), 1-12. https://doi.org/10.12989/scs.2019.30.1.001.
- Fakoor, M. and Shokrollahi, M.S. (2018), "A new macro-mechanical approach for investigation of damage zone effects on mixed mode I/II fracture of orthotropic materials", Acta Mech., 229(8), 3537-3556. https://doi.org/10.1007/s00707-018-2132-4.
- Farid, H.M. and Fakoor, M. (2019), "Mixed mode I/II fracture criterion for arbitrary cracks in orthotropic materials considering T-stress effects", Theor. Appl. Fract. Mec., 99, 147-160. https://doi.org/10.1016/j.tafmec.2018.11.015.
- Gambarotta, L. and Lagomarsino, S. (1993), "A microcrack damage model for brittle materials", Int. J. Solids Stuct., 30(2), 177-198. https://doi.org/10.1016/0020-7683(93)90059-G.
- Golewski, G.L. (2017a), "Effect of fly ash addition on the fracture toughness of plain concrete at third model of fracture", J. Civ. Eng. Manag., 23(5), 613-620. https://doi.org/10.3846/13923730.2016.1217923.
- Golewski, G.L. (2017b), "Determination of fracture toughness in concretes containing siliceous fly ash during mode III loading", Struct. Eng. Mech., 62(1), 1-9. https://doi.org/10.12989/sem.2017.62.1.001.
- Golewski, G.L. (2017c), "Improvement of fracture toughness of green concrete as a result of addition of coal fly ash. Characterization of fly ash microstructure", Mater. Charact. 134, 335-346. https://doi.org/10.1016/j.matchar.2017.11.008.
- Golewski G.L. (2018), "An assessment of microcracks in the Interfacial Transition Zone of durable concrete composites with fly ash additives", Compos. Struct., 200, 515-520. https://doi.org/10.1016/j.compstruct.2018.05.144
- Golewski, G.L. (2019), "The influence of microcrack width on the mechanical parameters in concrete with the addition of fly ash: Consideration of technological and ecological benefits", Constr. Build. Mater., 197, 849-861. https://doi.org/10.1016/j.conbuildmat.2018.08.157.
- Golewski, G.L. and Sadowski, T. (2016a), "A Study of mode III fracture toughness in young and mature concrete with fly ash additive", Solid State Phenom., 254, 120-125. https://doi.org/10.4028/www.scientific.net/SSP.254.120.
- Golewski, G.L. and Sadowski, T. (2016b), "Macroscopic evaluation of fracture processes in Fly ash concrete", Solid State Phenom., 254, 188-193. https://doi.org/10.4028/www.scientific.net/SSP.254.188.
- Gowhari Anaraki A.R. and Fakoor, M. (2010b), "Mixed mode fracture criterion for wood based on a reinforcement microcrack damage model", Mater. Sci. Eng. A, 527(27-28), 7184-7191. tps://doi.org/10.1016/j.msea.2010.08.004.
- Jernkvist, L.O. (2001a), "Fracture of wood under mixed mode loading: I. Derivation of fracture criteria", Eng. Fract. Mech., 68(5), 549-563. https://doi.org/10.1016/S0013-7944(00)00127-2.
- Jernkvist, L.O. (2001b), "Fracture of wood under mixed mode loading: II. Experimental investigation of Picea abies", Eng. Fract. Mech., 68(5), 565-576. https://doi.org/10.1016/S0013-7944(00)00128-4.
- Kharazan, M., Sadr, M.H. and Kiani, M. (2014), "Delamination growth analysis in composite laminates subjected to low velocity impact", Steel Compos. Struct., 17(4), 387-403. https://doi.org/10.12989/scs.2014.17.4.387.
- Kupski, J., de Freitas, S.T., Zarouchas, D., Camanho, P.P. and Benedictus, R. (2019), "Composite layup effect on the failure mechanism of single lap bonded joints", Compos. Struct., 217, 14-26. https://doi.org/10.1016/j.compstruct.2019.02.093.
- Leicester, R.H. (1974), "Application of linear fracture mechanics in design of timber structures", Proceedings of the Conference of the Australian Fracture Group, Melbourne, Australia.
- Li, Y.D., Xiong, T. and Cai, Q.G. (2015), "Coupled interfacial imperfections and their effects on the fracture behavior of a layered multiferroic cylinder", Acta Mech., 226(4), 1183-1199. https://doi.org/10.1007/s00707-014-1246-6.
- Mall, S., Murphy, J.F. and Shottafer, J.E. (1983), "Criterion for mixed mode fracture in wood", J. Eng. Mech., 109(3), 680-690. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:3(680).
- Muralidhara, S., Prasad, B.R., Eskandari, H. and Karihaloo, B.L. (2010), "Fracture process zone size and true fracture energy of concrete using acoustic emission", Cnstr. Build. Mater., 24(4), 479-486. https://doi.org/10.1016/j.conbuildmat.2009.10.014.
- Nobile, L. and Carloni, C. (2005), "Fracture analysis for orthotropic cracked plates", Compos. Struct., 68(3), 285-293. https://doi.org/10.1016/j.compstruct.2004.03.020.
- Quade, D.J., Jana, S.C., Morscher, G.N., Kanaan, M. and McCorkle, L. (2019), "The effect of thin film adhesives on mode II inter-laminar fracture toughness in carbon fiber composites with shape memory alloy inserts", Mech. Mater., 131, 22-32. https://doi.org/10.1016/j.mechmat.2019.01.002.
- Rizov, V.I. (2017), "Non-linear study of mode II delamination fracture in functionally graded beams", Steel Compos. Struct., 23(3), 263-271. https://doi.org/10.12989/scs.2017.23.3.263.
- Romanowicz, M. and Seweryn, A. (2008), "Verification of a non-local stress criterion for mixed mode fracture in wood", Eng. Fract. Mech., 75(10), 3141-3160. https://doi.org/10.1016/j.engfracmech.2007.12.006.
- Saouma, V.E., Ayari, M.L. and Leavell, D.A. (1987), "Mixed mode crack propagation in homogeneous anisotropic solids", Eng. Fract. Mech., 27(2), 171-184. https://doi.org/10.1016/0013-7944(87)90166-4.
- Shahverdi, M., Vassilopoulos, A.P. and Keller, T. (2016), "Mixed-Mode I/II fracture behavior of asymmetric composite joints", Procedia Structural Integrity, 2, 1886-1893. https://doi.org/10.1016/j.prostr.2016.06.237
- Shan, M., Liu, F., Fang, Z., Zhao, L. and Zhang, J. (2018), "A bi-material property based FE modelling method for progressive damage analyses of composite double-lap bolted joints", Results in Physics, 11, 674-683. ttps://doi.org/10.1016/j.rinp.2018.10.018.
- Sih, G.C. (1974), "Strain-energy-density factor applied to mixed mode crack problems", Int. J. Fract., 10(3), 305-321. https://doi.org/10.1007/BF00035493.
- Sih, G.C., Paris, P.C. and Irwin G.R. (1965), "On cracks in rectilinearly anisotropic bodies", Int. J. Fract. Mech., 1(3), 189-203. https://doi.org/10.1007/BF00186854.
- Toribio, J. and Ayaso, F. J. (2003), "A fracture criterion for high-strength steel structural members containing notch-shape defects", Steel Compos. Struct., 3(4), 231-242. https://doi.org/10.12989/scs.2003.3.4.231.
- Van der Put, T.A.C.M. (2007), "A new fracture mechanics theory for orthotropic materials like wood", Eng. Fract. Mech., 74(5), 771-781. https://doi.org/10.1016/j.engfracmech.2006.06.015.
- Van der Put, T.A.C.M. (2015), "Exact failure criterion for wood: Theory extension and synthesis of all series A publications", Delft Wood Science Foundation Publication, Series, 1-ISSN 1871-675X,.
- Vasic, S. and Smith, I. (2002), "Bridging crack model for fracture of spruce", Eng. Fract. Mech., 69(6), 745-760. https://doi.org/10.1016/S0013-7944(01)00091-1.
- Vasic, S., Smith, I. and Landis, E. (2007), "Fracture zone characterization-Micro-mechanical study", Wood Fiber Sci, 34(1), 42-56.
- Wang, W., Fernandes, R.L., De Freitas, S.T., Zarouchas, D. and Benedictus, R. (2018), "How pure mode I can be obtained in bi-material bonded DCB joints: A longitudinal strain-based criterion", Compos. Part B: Eng., 153, 137-148. https://doi.org/10.1016/j.compositesb.2018.07.033.
- Williams, M.L. (1957), "On the stress distribution at the base of a stationary crack", J. Appl. Mech., 24(3), 109-114. https://doi.org/10.1115/1.4011454
- Williams, J.G. and Birch M.W. (1976), "Mixed mode fracture in anisotripic media", In Cracks and Fracture, ASTM STP, 125-137.
- Wu, E.M. (1967), "Application of fracture mechanics to anisotropic plates", J. Appl. Mech., 34(4), 967-974. https://doi.org/10.1115/1.3607864.
- Zhou, S., Yang, C., Tian, K., Wang, D., Sun, Y., Guo, L. and Zhang, J. (2019), "Progressive failure modelling of double-lap of composite bolted joints based on Puck's criterion", Eng. Fract. Mech., 206, 233-249. https://doi.org/10.1016/j.engfracmech.2018.11.038.