• 제목/요약/키워드: dense networks

Search Result 172, Processing Time 0.026 seconds

Home Monitoring Server System using Smart Interface over Wireless Networks (무선네트워크 통신을 활용한 스마트 연동 홈 모니터링 서버 시스템)

  • Choi, Sung-Ja;Kang, Byeong-Gwon
    • Journal of Digital Convergence
    • /
    • v.10 no.8
    • /
    • pp.225-231
    • /
    • 2012
  • In this paper, we implement a wireless home monitoring system using physical computing platform with the open source type for house environment management. Sensors for temperature, optics and ultrasonic waves are used for home environment elements detection and control for the home safety. To obtain information related with home and transmit it to RIA Windows server system, XBee wireless communication system is used and the transmitted information is saved in mySQL database for history management. The possibility of prevention against fire disaster of a house situated in a dense buildings area and highly populated environments is suggested by adopting the proposed system.

Cost-Effective Transition to 40 Gb/s Line Rate Using the Existing 10 Gb/s-Based DWDM Infrastructure

  • Lee, Sang-Soo;Cho, Hyun-Woo;Lim, Sang-Kyu;Lee, Dong-Soo;Yoon, Kyeong-Mo;Lee, Yong-Gi;Kim, Kwang-Joon;Ko, Je-Soo
    • ETRI Journal
    • /
    • v.30 no.2
    • /
    • pp.261-267
    • /
    • 2008
  • In this paper, we propose and demonstrate a cost-effective technique to upgrade the capacity of dense wavelength division multiplexing (DWDM) networks to a 40 Gb/s line rate using the existing 10 Gb/s-based infrastructure. To accommodate 40 Gb/s over the link optimized for 10 Gb/s, we propose applying a combination of super-FEC, carrier-suppressed return-to-zero, and pre-emphasis to the 40 Gb/s transponder. The transmission of 40 Gb/s DWDM channels over existing 10 Gb/s line-rate long-haul DWDM links, including $40{\times}40$ Gb/s transmission over KT's standard single-mode fiber optimized for 10 Gb/s achieves successful results. The proposed upgrading technique allows the Q-value margin for a 40 Gb/s line rate to be compatible with that of 10 Gb/s.

  • PDF

Impact of 5G New Radio Downlink Signal on Fixed-Satellite Service Earth Station

  • Park, Yeon-Gyu;Lee, Il-Kyoo
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.3
    • /
    • pp.155-161
    • /
    • 2020
  • The fifth generation (5G) is a state-of-the-art mobile communication access technology that uses sub 6 GHz bands and mmWave. Presently, the 5G network is partially deployed along with 4G in areas with dense traffic. In the future, the demand for the 5G bandwidth may increase. Thus, it is necessary to study the coexistence between the 5G and radio systems using adjacent or same channels to eliminate the interference between radio systems and efficiently utilize the frequency. This paper analyzed the impact of 5G new radio downlink on the fixed-satellite service earth station operating at the co-channel and adjacent channel in the upper 3.7 GHz band using the Spectrum Engineering Advanced Monte Carlo Analysis Tool, which is based on the Monte Carlo method. The results of this paper can be utilized for planning the frequency allocation of 5G networks; they can also be used as a guideline for deploying 5G base stations around a fixed-satellite service earth station.

Coordinated Cognitive Tethering in Dense Wireless Areas

  • Tabrizi, Haleh;Farhadi, Golnaz;Cioffi, John Matthew;Aldabbagh, Ghadah
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.314-325
    • /
    • 2016
  • This paper examines the resource gain that can be obtained from the creation of clusters of nodes in densely populated areas. A single node within each such cluster is designated as a "hotspot"; all other nodes then communicate with a destination node, such as a base station, through such hotspots. We propose a semi-distributed algorithm, referred to as coordinated cognitive tethering (CCT), which clusters all nodes and coordinates hotspots to tether over locally available white spaces. CCT performs the following these steps: (a) groups nodes based on a modified k-means clustering algorithm; (b) assigns white-space spectrum to each cluster based on a distributed graph-coloring approach to maximize spectrum reuse, and (c) allocates physical-layer resources to individual users based on local channel information. Unlike small cells (for example, femtocells and WiFi), this approach does not require any additions to existing infrastructure. In addition to providing parallel service to more users than conventional direct communication in cellular networks, simulation results show that CCT can increase the average battery life of devices by 30%, on average.

Cell Virtualization with Network Partition for Initial User Association in Software Defined Small-cell Networks

  • Sun, Guolin;Lu, Li;Ayepah-Mensah, Daniel;Fang, Xiufen;Jiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4703-4723
    • /
    • 2018
  • In recent years, dense small cell network has been deployed to address the challenge that has resulted from the unprecendented growth of mobile data traffic and users. It has proven to be a cost efficeient solution to offload traffic from macro-cells. Software defined heterogeneous wireless network can decouple the control plane from the data plane. The control signal goes through the macro-cell while the data traffic can be offloaded by small cells. In this paper, we propose a framework for cell virtualization and user association in order to satisfy versatile requirements of multiple tenants. In the proposed framework, we propose an interference graph partioning based virtual-cell association and customized physical-cell association for multi-homed users in a software defined small cell network. The proposed user association scheme includes 3 steps: initialization, virtual-cell association and physical-cell association. Simulation results show that the proposed virtual-cell association outperforms the other schemes. For physical-cell association, the results on resource utilization and user fairness are examined for mobile users and infrastructure providers.

A NoSQL data management infrastructure for bridge monitoring

  • Jeong, Seongwoon;Zhang, Yilan;O'Connor, Sean;Lynch, Jerome P.;Sohn, Hoon;Law, Kincho H.
    • Smart Structures and Systems
    • /
    • v.17 no.4
    • /
    • pp.669-690
    • /
    • 2016
  • Advances in sensor technologies have led to the instrumentation of sensor networks for bridge monitoring and management. For a dense sensor network, enormous amount of sensor data are collected. The data need to be managed, processed, and interpreted. Data management issues are of prime importance for a bridge management system. This paper describes a data management infrastructure for bridge monitoring applications. Specifically, NoSQL database systems such as MongoDB and Apache Cassandra are employed to handle time-series data as well the unstructured bridge information model data. Standard XML-based modeling languages such as OpenBrIM and SensorML are adopted to manage semantically meaningful data and to support interoperability. Data interoperability and integration among different components of a bridge monitoring system that includes on-site computers, a central server, local computing platforms, and mobile devices are illustrated. The data management framework is demonstrated using the data collected from the wireless sensor network installed on the Telegraph Road Bridge, Monroe, MI.

A Software Architecture for High-speed PCE (Path Computation Element) Protocol (고성능 PCE (Path Computation Element) 프로토콜 소프트웨어 구조)

  • Lee, Wonhyuk;Kim, Seunhae;Kim, Hyuncheol
    • Convergence Security Journal
    • /
    • v.13 no.6
    • /
    • pp.3-9
    • /
    • 2013
  • With the rapidly changing information communication environment and development of technologies, the informati on networks are evolved from traditional fixed form to an active variable network that flexible large variety of data can be transferred. To reflect the needs of users, the next generation using DWDM (Dense Wavelength Division M ultiplexing) transmission system and OXC (Optical Cross Connect) form a dynamic network. After that GMPLS (Ge neralized Multi-Protocol Label Switching) can be introduced to dynamically manage and control the Reconfigurable Optical Add-drop Multiplexer (ROADM)/Photonic Cross Connect (PXC) based network. This paper propose a softw are architecture of Path Computation Element (PCE) protocol that has proposed by Internet Engineering Task Force (IETF) to path computation. The functional blocks and Application Programming Interface (API) of the PCE protoco l implementation are also presented.

A Noble Equalizer Structure with the Variable Length of Training Sequence for Increasing the Throughput in DS-UWB

  • Chung, Se-Myoung;Kim, Eun-Jung;Jin, Ren;Lim, Myoung-Seob
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1C
    • /
    • pp.113-119
    • /
    • 2009
  • The training sequence with the appropriate length for equalization and initial synchronization is necessary before sending the pure data in the burst transmission type DS-UWB system. The length of the training sequence is one of the factors which make throughput decreased. The noble structure with the variable length of the training sequence whose length can be adaptively tailored according to the channel conditions (CM1,CM2,CM3,CM4) in the DS-USB systems is proposed. This structure can increase the throughput without sacrificing the performance than the method with fixed length of training sequence considering the worst case channel conditions. Simulation results under IEEE 802.15.3a channel model show that the proposed scheme can achieve higher throughput than a conventional one with the slight loss of BER performance. And this structure can reduce the computation complexity and power consumption with selecting the short length of the training sequence.

Enhanced OLSR Routing Protocol Using Link-Break Prediction Mechanism for WSN

  • Jaggi, Sukhleen;Wasson, Er. Vikas
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.3
    • /
    • pp.259-267
    • /
    • 2016
  • In Wireless Sensor Network, various routing protocols were employed by our Research and Development community to improve the energy efficiency of a network as well as to control the traffic by considering the terms, i.e. Packet delivery rate, the average end-to-end delay, network routing load, average throughput, and total energy consumption. While maintaining network connectivity for a long-term duration, it's necessary that routing protocol must perform in an efficient way. As we discussed Optimized Link State Routing protocol between all of them, we find out that this protocol performs well in the large and dense networks, but with the decrease in network size then scalability of the network decreases. Whenever a link breakage is encountered, OLSR is not able to periodically update its routing table which may create a redundancy problem. To resolve this issue in the OLSR problem of redundancy and predict link breakage, an enhanced protocol, i.e. S-OLSR (More Scalable OLSR) protocol has been proposed. At the end, a comparison among different existing protocols, i.e. DSR, AODV, OLSR with the proposed protocol, i.e. S-OLSR is drawn by using the NS-2 simulator.

Ionospheric Storm and Spatial Gradient Analysis for GBAS

  • Kim, Jeong-Rae;Yang, Tae-Hyoung;Lee, Young-Jae;Jun, Hyang-Sig;Nam, Gi-Wook
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.361-365
    • /
    • 2006
  • High ionospheric spatial gradient during ionospheric storm is most concern for the landing approach with GNSS (Global Navigation Satellite System) augmentation systems. In case of the GBAS (Ground-Based Augmentation System), the ionospheric storm causes sudden increase of the ionospheric delay difference between a ground facility and a user (aircraft), and the aircraft position error increases significantly. Since the ionosphere behavior and the storm effect depend on geographic location, understanding the ionospheric storm behavior at specific regional area is crucial for the GNSS augmentation system development and implementation. Korea Aerospace Research Institute and collaborating universities have been developing an integrity monitoring test bed for GBAS research and for future regional augmentation system development. By using the dense GPS (Global Positioning System) networks in Korea, a regional ionosphere map is constructed for finding detailed aspect of the ionosphere variation. Preliminary analysis on the ionospheric gradient variation during a recent storm period is performed and the results are discussed.

  • PDF