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Abstract 
 

In recent years, dense small cell network has been deployed to address the challenge that has 
resulted from the unprecendented growth of mobile data traffic and users. It has proven to be a 
cost efficeient solution to offload traffic from macro-cells. Software defined heterogeneous 
wireless network can decouple the control plane from the data plane. The control signal goes 
through the macro-cell while the data traffic can be offloaded by small cells. In this paper, we 
propose a framework for cell virtualization and user association in order to satisfy versatile 
requirements of multiple tenants. In the proposed framework, we propose an interference 
graph partioning based virtual-cell association and customized physical-cell association for 
multi-homed users in a software defined small cell network. The proposed user association 
scheme includes 3 steps: initialization, virtual-cell association and physical-cell association. 
Simulation results show that the proposed virtual-cell association outperforms the other 
schemes. For physical-cell association, the results on resource utilization and user fairness are 
examined for mobile users and infrastructure providers. 
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1. Introduction 

To satify the demand on an immense growth of mobile traffic, advanced technologies 
such as multi-homed equipment and multi-path transmission are investigated by both 
academia and industry [1][2]. However, user association problem, namely how users select its 
serving Access Point (AP), are complicated [3]. Finding an efficient way of user association is 
the key to achieve the best resource utilization. However, user association management in a 
multitude of users and APs is not an easy job. The general user association plays a pivotal role 
in enhancing network performance. In general, each AP in a Wi-Fi network periodically 
broadcasts the beacon frames to announce its presence. When a user equipment is turned on or 
reconnect to a network, it scans those signals to measure their received strengths and therefore 
decides to connect to the AP with the strongest Received Signal Strength Indicator (RSSI). In 
the system with uneven user distribution, all users prefer to connect to a powerful AP 
regardless of other factors. This pure RSSI based user association results in some APs being 
overloaded, while others are idle. This leads to the mediocre resource utilization as it decreases 
the Quality of Service (QoS) for users.  

On the other hand, because of diverse application requirements on network protocol design, 
different tenants prefer to define their own user association schemes for different optimization 
objectives. The introduction of Software Defined Network (SDN) reduces the complexity of  
flow control by decoupling the control plane from the data plane [4]. In the literatures,various 
software defined user association schemes have been proposed[3]. Notably, the programmable 
WLANs with Odin [5] and Cloud-MAC [6] are discussed. They propose the control logic to 
manage a crowd of resources in a software defined Wi-Fi network. Meanwhile, network 
function virtualization will play a pivotal role in the future evolution of information and 
communication technology. It can reduce the CapEx and OpEx by creating virtualized 
network slices to satisfy the diverse demands of mobile users [7]. Cell virtualization and user 
association have been introduced under the architecture of Cloud Radio Access Networks 
(Cloud-RAN) [8]. However, APs in a static cluster must share a common cloud of Base-Band 
Units (BBUs). Anyway, it has been noted that we require the appropriate schemes for user 
association for different services in virtualized radio access networks. 

Large network scale leads to high computation complexity in Cloud-MAC and Cloud-RAN. 
Therefore, we propose a dynamic clustering scheme via graph partitioning and allow versatile 
user association via small cell virtualization in SDN. Particularly, the objective is to fairly 
balance the traffic load in a partitioned network within a system of virtualized cells and 
multi-interfaced users. In SDN-based heterogeneous cellular network, small cells are used to 
offload data traffic from Macro-cell in terms of physical Transmission Points (TPs). The 
concept of TP is introduced to differentiate APs that are used to offload traffic. AP has both 
control plane and data plane, but a TP is mostly responsible for data transfer. The potential 
application of TP includes versatile relay system [9][10] and secondary eNodeB selection in 
the dual-connectivity mode of 5G system[11]. The main contributions of this paper can be 
summarized as follows: 

 A framework of versatile association manager based on cell virtualization is built 
for a software defined small cell network. It achieves the isolation among virtual 
cells in a self-organized manner in terms of Virtual Transmission Points (VTPs). It 
allows customized physical-cell association for different tenants.  

 An interference graph partitioning algorithm has been developed for virtual-cells 
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association based on Kernighan-Lin Algorithm (KLA). The clustering scheme on 
the interference graph is to swap TPs to maximize the utility function. The utility 
function is defined as the difference of average Signal to Interference plus Noise 
Ratio (SINR) between intra-virtual-cell and inter-virtual-cell.  

 Comprehensive simulations are done to show the effectiveness and performance of 
the proposed algorithm from the perspectives of virtual mobile network operators, 
physical network operators and users.  

The rest of this paper is organized as follows: Section 2 summarizes the related works, while 
the proposed architecture and algorithms are presented in Section 3. The experiment results 
are given in Section 4 and finally, we conclude this paper in Section 5.  

2. Related Works 
In small cell networks, traffic load balancing is an essential task for network performance 

optimization and has been extensively studied [12]. In mobile networks, traffic load balancing 
is achieved by executing a user association process, in which mobile users are assigned to the 
APs. In [13], authors present an algorithm for the throughput maximization problem by 
selecting the active RRHs and selects a subset of active RRHs that maximize the system 
throughput under the front-haul constraint. Cell biasing algorithms are developed in [14] to 
balance traffic load and also enhance network QoS among macro-BSs and pico-BSs. The cell 
biasing algorithm performs user association based on the biased measured pilot signal strength 
and off-loads traffic from macro-BSs to pico-BSs. Authors proposed a dynamic user 
association algorithm in [15] to maximize the sum rate of network and adopted cell biasing to 
balance the traffic load among BSs. On the other hand, authors proposed an alpha-optimal user 
association algorithm to achieve flow-level load balancing under spatially heterogeneous 
traffic distribution [16]. The proposed algorithm may maximize different network utilities, e.g. 
the traffic latency and the network throughput, by properly setting the value of alpha. In [17], 
authors proposed a network latency-aware user association scheme to minimize the average 
traffic delivery latency for backhaul constrained small cells.  

Energy consumption is one of the metrics to measure the efficient resource utilization. 
Thus, in [18], a user association in heterogeneous cellular networks was proposed to optimize 
energy utilization. Numerous valuable contributions have been published on energy efficient 
user association in HetNets. In [19], user association for the downlink of HetNets was 
optimized by maximizing the ratio between the total data rate of all users and the total energy 
consumption. The authors in [20]  investigated how to maximize the energy efficiency defined 
as the ratio of the achieved throughput over the energy cost by optimizing the time allocation 
for the downlink and multi-user uplink traffics for the simultaneous wireless information and 
power transfer systems.  

The outage coverage probability is used as the primary performance metric employed for 
user association analysis in conjunction with stochastic geometry. In particular, the authors of 
[21] and [22] modeled and analyzed the performance of max-RSS user association in K-tier 
downlink Het-Nets with the aid of stochastic geometry. The SINR model in [21] was 
improved in [22] in order to account for the activity factor of the co-existing heterogeneous 
BSs. It was shown that adding lightly-loaded femtocells and pico-cells to the network 
increases the overall coverage probability.  

In [5], authors proposed a prototype of SDN framework called Odin for enterprise WLANs. 
Odin builds on a Light Virtual Access Point (LVAP) abstraction that virtualizes association 
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state, and thus results in multiple virtual clients connected to a single physical AP. Authors 
introduced Cloud-MAC in [6] as a novel management architecture, in which APs just forward 
MAC frames. All other functionalities, such as the MAC data or management frames 
processing, are implemented in a cloud server. A technique that uses  UE-centric metrics to 
partition the network into multiple overlapping VTP sets is introduced in [24], which also 
considers TP’s load to calculate their bonding level. However, no study has been done on 
multi-homed users or on theoretical analysis in virtualized radio access network. Multi-layer 
virtualization schemes were presented as cell and user virtualization for ultra-dense network 
[24], where authors virtualized different network component to tackle the interference and 
mobility issues in dense network. Unfortunately, except for multi-layer virtualization, no 
appropriate scheme for user association is presented. To choose appropriate small cells for 
users, the user association scheme in cloud-RAN based small cell network with wireless 
virtualization was studied in [8]. To meet the diversity requirements from users and multiple 
tenants, network virtualization enables mobile service providers to program and deploy their 
own typical enterprise LAN services in an independent manner. In [27], a dynamic user 
clustering method has been investigated to minimize the intra-cluster interference. Contrary to 
the aforementioned association schemes, flexible user association in virtualized TP networks 
has to be done considering intra-cluster and inter-cluster signal-to-inteference. 

3. The Proposed Scheme 

3.1 System architecture  
In this section, we present the system architecture followed by the problem addressed in the 

paper. Fig. 1 shows the proposed network architecture and signaling for the initial user 
association. As illustrated in Fig. 1, a heterogeneous small cell network is composed of an 
LTE Macro-cell and several TPs, such as Femtocells or relay nodes. This heterogeneous small 
cell network is programmable and managed by an SDN controller. Under this SDN 
architecture, decoupling of control plane and data plane is achieved. The control signaling 
goes through macro-cells, whilst data traffic is mostly offloaded to small cell TPs. The SDN 
controller manages the system and makes decision on user association.The physical resource 
request and allocation includes the process between the user and the TP without the controller. 
In this scenario, a set of multi-homed users, which are characterized by at least one radio 
interface, are deployed in the coverage area of the Macro-cell AP. Odin  assumes that the 
controller can create VTPs as Virtual Machines (VMs) on a physical AP [5]. It is one kind of 
infrastructure-level virtualization. In this paper, VTPs are defined as virtual logical cells on the 
SDN controller. The cell virtualization is implemented using a dynamical interference graph 
partitioning method. In Fig. 1, two virtualized cells, VTP1 and VTP2, are created as logic 
entities on a controller based on graph partitioning. They share a common physical network 
but keep isolation as two independent virtualized cells.  

In this scenario, we assume no application is running at the initial state of the system. When 
a mobile device is turned on, each of its radio interfaces scans the beacon frames heard from 
TPs and records the pair <TP_Id, rssi_value>. The TP forwards the paired information as 
association_request through the Macro-cell AP to the SDN controller. A specific virtual 
association manager handles this association_request and then makes an association_decision 
based on the preferences of tenants. The manager will update the flow-table on the target_TP 
and notify the user with a specific target_TP_ID. The user will then send a Resource_request 
message to this specific TP and transmit data on the allocated resource. 
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Fig. 1. The system architecture and signaling 

Fig. 2 shows the software architecture in the SDN controller for association. The SDN 
controller has three modules, i.e. physical-TP association, cell virtualization and monitoring.  

 
Fig. 2. The software architecture for association manager 

In the monitoring module, user and network information are collected and then stored in the 
database. The user information includes a set of RSSI or SINR measurements. The network 
information includes load distribution on multiple TPs and network topology. In the cell 
virtualization module of the controller, multiple tenants co-exist and share all of the cells in the 
network. Each tenant will be allocated with one virtual cell. Therefore, each tenant gets a 
programmable network slice with a common API. The cell virtualization module dynamically 
matches the virtual cell  to a set of physical TPs based on the graph partitioning algorithm. In 
each virtual cell, the module of physical-TP association dynamically matches each user to one 
or more specific TPs. Each tenant can define its own association manager based on its own 
preference.  

The proposed framework provides programmable virtual cells, which can be customized for 
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different tenants. Each tenant can define their own physical-TP association model based on its 
own preference. For example, in a high-definition video dispatching service, the objective of 
the user association is to maximize spectrum efficiency. For Voice over Internet Protocol 
(VOIP) service, the best association may be a coverage-oriented scheme. For a massive 
number of small packets in Internet of Things (IoTs), user association optimization may 
consider network latency. Therefore, cell virtualization based architecture enables a 
programmable association manager for different application scenarios for each tenant. In this 
paper, we provide physical cell association problem formulation with three examples in 
Section 3.4. We take the system or link capacity as an optimization objective where all TPs are 
fairly load balanced. Finally, the controller will make the decision on user association and 
notify users.  

3.2 Problem formulation 
We consider a densely deployed small cell network, composed of J TPs and U users, managed 
by an SDN controller. We assume that any user u ∈{1, 2,..., U} has 𝑠𝑠𝑢𝑢 radio interfaces. I 
denotes the total number of all active radio interfaces in the network, I=∑ 𝑠𝑠𝑢𝑢𝑢𝑢∈𝑈𝑈 .The 
interference from other TPs to the radio communication link between interface i and TP j is 
∑ 𝑃𝑃𝑗𝑗 ∗ 𝑙𝑙𝑖𝑖k 𝑘𝑘≠𝑗𝑗 , where 𝑃𝑃𝑗𝑗 is the transmit power of TP j and  𝑙𝑙𝑖𝑖k  is the channel gain from TP k or 
TP j to the interface i, which is interference. The SINR for the interface i with its associated TP 
j∈{1, 2 ,…, J}can be  

𝛾𝛾𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑗𝑗∗𝑙𝑙𝑖𝑖j 
𝑁𝑁0+∑ 𝑃𝑃𝑛𝑛∗𝑙𝑙𝑖𝑖k 𝑘𝑘≠𝑗𝑗

                                                        (1) 

where 𝑁𝑁0 is the power spectrum density of additive white Gaussian noise; 𝑙𝑙𝑖𝑖j  is the channel 
gain from TP j to the interface i, which includes the path-loss and fading effects. 

Let 𝑎𝑎𝑖𝑖𝑖𝑖∈{0,1}  be the association indication variable between the interface i and  TP j, i.e 
𝑎𝑎𝑖𝑖𝑖𝑖 = 1,denotes  the interface i is associated with TP j; otherwise, the interface i is not 
associated with TP j. Furthermore, we assume user demand on bandwidth is unlimited. 
Therefore, throughput of interface i from TP j is: 

ᴪ𝑖𝑖𝑖𝑖 =
𝑤𝑤𝑗𝑗*log2�1+𝛾𝛾𝑖𝑖𝑖𝑖�∗𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛𝑗𝑗
                                                      (2) 

where 𝑤𝑤𝑗𝑗 is the bandwidth of TP j, and 𝑛𝑛𝑗𝑗 is the total number of interfaces associated with TP 
j. We formulate a Mixed Integer Nonlinear Programming (MINLP) problem to maximize the 
system throughput: 

𝑚𝑚𝑚𝑚𝑚𝑚∑ ∑ ∑ ᴪ𝑖𝑖𝑖𝑖 
𝑠𝑠𝑢𝑢
𝑖𝑖=1

𝑈𝑈
𝑢𝑢=1

𝐽𝐽
𝑗𝑗=1                                            (3) 

C1: ∑ 𝑎𝑎𝑖𝑖𝑖𝑖J
j=1 =1, ∀ i∈{1,2,…,I}                                         (4) 

C2: ∑ 𝑎𝑎𝑖𝑖𝑖𝑖=1su
i=1 , ∀ u ∈{1, 2, …, U}, ∀ j∈{1, 2, …, J}                          (5) 

where C1 and C2 means that each user interface is connected to only one TP and all of the 
interfaces from the same user cannot be associated with the same TP respectively. The 
formulated problem is NP-hard and is not practical for a large scale network. Therefore, we 
resort to heuristic algorithms by dividing the formulated problem (2)-(5) into three steps: 
Interference graph construction virtual-cell association and physical-cell association. In order 
to create virtual-cell association in step 1, we need to group physical cells into a number of 
clusters, which are identified as virtual cells. In step 2, within a specific cluster of physical 
cells, we resort to optimal user association with load balancing. The virtual-cell association is 
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preceded by an initial interference graph construction. 
Considering radio coverage, a bipartite graph of network topology 𝐺𝐺 = {,,𝐸𝐸} is a natural 

graph-based representation of the global network information, where  denotes the set of TPs 
and  denotes the set of users. Each edge 𝑝𝑝𝑢𝑢j in the coverage graph is the average RSSI value 
measured by all interfaces of user u for the signal coming from TP j. In general, the bipartite 
graph cannot be used for TP clustering, so we resort to a full-connectivity interference graph 
for TPs. Firstly, the Signal and Interference Ratio (SIR) γ𝑢𝑢,ℎ→𝑔𝑔 for user u in the coverage of 
TP g with the interference from TP h is as follows, 

𝛾𝛾𝑢𝑢,ℎ→𝑔𝑔 = 𝑃𝑃𝑔𝑔∗𝑙𝑙𝑢𝑢𝑢𝑢 

𝑁𝑁0+𝑃𝑃ℎ∗𝑙𝑙𝑢𝑢ℎ 
                                                        (6) 

where 𝑃𝑃𝑔𝑔 and 𝑃𝑃ℎ are the transmit power of TP 𝑔𝑔 and TP h, respectively. 𝑙𝑙𝑢𝑢𝑢𝑢 is the channel gain 
between user u and TP 𝑔𝑔 and 𝑙𝑙𝑢𝑢h  is the channel gain between user u and TP h. We record the 
received signal strength for user u from TP 𝑔𝑔 as 𝑝𝑝𝑢𝑢𝑢𝑢 = 𝑃𝑃𝑔𝑔 ∗ 𝑙𝑙𝑢𝑢𝑢𝑢 . Therefore, after ignoring 
thermal noise 𝑁𝑁0, equation (6) is written as 

𝛾𝛾𝑢𝑢,ℎ→𝑔𝑔 = 𝑝𝑝𝑢𝑢𝑢𝑢
𝑝𝑝𝑢𝑢ℎ

                                                               (7) 

where 𝑝𝑝𝑢𝑢𝑢𝑢 denotes the RSSI for user u and TP 𝑔𝑔, and 𝑝𝑝𝑢𝑢ℎ denotes the RSSI for user u and TP 
h. Then, we can get the average SIR for all of users in the coverage of TP 𝑔𝑔 as 

∁ℎ→𝑔𝑔= ∑ 1
|𝑇𝑇𝑇𝑇(𝑔𝑔)|

𝛾𝛾𝑢𝑢,ℎ→𝑔𝑔𝑢𝑢∈𝑇𝑇𝑇𝑇(𝑔𝑔)                                                   (8) 

where TP(𝑔𝑔) is a set of users covered by TP 𝑔𝑔. |𝑇𝑇𝑇𝑇(𝑔𝑔)| is the number of users  covered by TP 
𝑔𝑔. Note that interference should be bidirectional. In the same way, we can get the formula of 
inter-cell SIR from TP 𝑔𝑔 to TP h for any user u in the coverage of TP h. 

∁𝑔𝑔→ℎ= ∑ 1
|𝑇𝑇𝑇𝑇(ℎ)|

𝛾𝛾𝑢𝑢,𝑔𝑔→ℎ𝑢𝑢∈𝑇𝑇𝑇𝑇(ℎ)                                                   (9) 

where γu,h→𝑔𝑔 is equal to 𝑝𝑝𝑢𝑢ℎ
𝑝𝑝𝑢𝑢𝑢𝑢

 and |𝑇𝑇𝑇𝑇(ℎ)| is the number of users in coverage by TP h. TP(h) is 

a set of users covered by TP h.  
Based on graph partitioning, we construct the undirected interference graph G = {𝒥𝒥,𝐸𝐸} 

for TPs by combining two weights ∁𝑔𝑔→ℎ and ∁ℎ→𝑔𝑔of the bi-directional coverage graph as a 
common weight 𝑒𝑒𝑔𝑔ℎ. Considering the relationship between two TPs by appraising inter-cell 
interference for all mobile users, G is shown in Fig. 3. Finally, each edge in G is defined as 
follows: 

𝑒𝑒𝑔𝑔ℎ = ∑ 1
|𝑇𝑇𝑇𝑇(𝑔𝑔)|

𝛾𝛾𝑢𝑢,ℎ→𝑔𝑔𝑢𝑢∈𝑇𝑇𝑇𝑇(𝑔𝑔) +∑ 1
|𝑇𝑇𝑇𝑇(ℎ)|

𝛾𝛾𝑢𝑢,𝑔𝑔→ℎ𝑢𝑢∈𝑇𝑇𝑇𝑇(ℎ) ,∀ 𝑔𝑔 ≠  ℎ ,∀ u               (10) 

where TP 𝑔𝑔 and TP h are two arbitrary vertices in the graph G. 𝑒𝑒𝑔𝑔ℎ denotes the average SIR 
between TP 𝑔𝑔 and TP h.  

We reformulate the cell virtualization problem into a graph partition problem in order to  
isolate the partitions of the network. We assume that ℬ = {𝐵𝐵1,𝐵𝐵2 , … ,𝐵𝐵𝑀𝑀} is a partition of TP 
network 𝒥𝒥, i.e. 𝐵𝐵𝑚𝑚1 ∩ 𝐵𝐵𝑚𝑚2 = ∅ for ∀𝑚𝑚1 ≠ 𝑚𝑚2 and ∪𝑚𝑚=1𝑀𝑀 𝐵𝐵𝑚𝑚 = 𝒥𝒥. M is the total number of 
partitions of the TP network, which is known. We derive objective function (11) by 
maximizing the difference between the average SIR of intra-virtual-cell and inter-virtual-cell. 

max∑ ∑ 𝑒𝑒𝑔𝑔ℎ𝑔𝑔∈𝐵𝐵𝑚𝑚1 ,ℎ∈𝐵𝐵𝑚𝑚2𝑚𝑚1=𝑚𝑚2 − ∑ ∑ 𝑒𝑒𝑔𝑔ℎ𝑔𝑔∈𝐵𝐵𝑚𝑚1 ,ℎ∈𝐵𝐵𝑚𝑚2𝑚𝑚1,𝑚𝑚2,𝑚𝑚1≠𝑚𝑚2               (11) 
where 𝑔𝑔 and h are two arbitrary vertices from 𝐵𝐵𝑗𝑗 and 𝐵𝐵𝑘𝑘. ∑ ∑ 𝑒𝑒𝑔𝑔ℎ𝑔𝑔∈𝐵𝐵𝑚𝑚1 ,ℎ∈𝐵𝐵𝑚𝑚2𝑚𝑚1=𝑚𝑚2  is the 
total weights of intra-virtual-cell edges and ∑ ∑ 𝑒𝑒𝑔𝑔ℎ𝑔𝑔∈𝐵𝐵𝑚𝑚1 ,ℎ∈𝐵𝐵𝑚𝑚2𝑚𝑚1,𝑚𝑚2,𝑚𝑚1≠𝑚𝑚2  is the total 
weights of inter-virtual-cell edges in the interference graph 𝐺𝐺. 
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Fig. 3.  The interference graph model abstraction for cell virtualization 

3.3 Virtual-cell association via Graph partition 
In this section, we propose an interference graph partitioning algorithm based on 

Kernighan-Lin Algorithm. By swapping two arbitrary vertices from two isolated partitions of 
the interference graph, we derive a utility function as the gain of swapping operation. We then 
minimize the inter-virtual-cell interference and the isolated independent virtual cell for each 
tenant. For each swapping operation, the corresponding utility function can be identified as: 

 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑔𝑔,ℎ) = �∑ 𝑒𝑒𝑔𝑔𝑡𝑡𝑡𝑡∈𝐺𝐺2 − ∑ 𝑒𝑒𝑔𝑔𝑡𝑡𝑡𝑡∈𝐺𝐺1 � + �∑ 𝑒𝑒ℎ𝑡𝑡𝑡𝑡∈𝐺𝐺2 − ∑ 𝑒𝑒ℎ𝑡𝑡𝑡𝑡∈𝐺𝐺1 � − 2 ∗ 𝑒𝑒𝑔𝑔ℎ ,        (12) 
𝑔𝑔 ∈ 𝐺𝐺1, ℎ ∈ 𝐺𝐺2 

where 𝑔𝑔 and h are two arbitrary vertices in G1 and G2, respectively. ∑ 𝑒𝑒𝑔𝑔𝑡𝑡𝑡𝑡∈𝐺𝐺1  is the internal 
cost of TP 𝑔𝑔 which is the sum of the costs of edges between TP 𝑔𝑔 and TP t in G1. ∑ 𝑒𝑒𝑔𝑔𝑡𝑡𝑡𝑡∈𝐺𝐺2  is 
the external cost of TP 𝑔𝑔 that is the sum of the costs of edges between TP 𝑔𝑔 and any TP t in 
G2 .The cost is calculated based on the distance between the sum of intra-virtual-cell 
interferences inside a subgraph and the sum of inter-virtual-cell interference outside a 
subgraph. With this utility function, we find the maximum value of gain in any subgraph. The 
maximum value is achieved in the last iteration of the graph partitioning algorithm. We record 
the difference between internal cost and external cost as 𝑍𝑍𝑔𝑔 = �∑ 𝑒𝑒𝑔𝑔𝑔𝑔 − ∑ 𝑒𝑒𝑔𝑔𝑔𝑔𝑡𝑡∈𝐺𝐺2𝑡𝑡∈𝐺𝐺1 � for TP 𝑔𝑔 
and 𝑍𝑍ℎ = (∑ 𝑒𝑒ℎ𝑡𝑡 − ∑ 𝑒𝑒ℎ𝑡𝑡𝑡𝑡∈𝐺𝐺1𝑡𝑡∈𝐺𝐺2 ) for TP h. 

The whole procedure for the proposed algoritm is described in Fig. 4. The algorithm first 
computes the RSSI values between users and all TPs,which are taken as the raw data set. It 
then construct a weighted interference graph G, which takes each TP as the vertex and 𝑒𝑒𝑔𝑔ℎ in 
equation (10) as the edge between TP 𝑔𝑔 and TP h.The graph G is  partitioned into two equal 
sub-graphs G1 and G2 in order to maximize utility function in equation (12). The algorithm 
iterates and improves a partition using a greedy strategy to pair up vertices of G1 and that of 
G2 so that exchange of the paired vertices from one group to the other group will improve the 
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sum of the partitioning gain defined in (12). Finally, it finds the maximum gain 𝑔𝑔_𝑚𝑚𝑚𝑚𝑚𝑚 which 
is the sum of gain as shown in line 12 of Algorithm 1 in Fig. 4. In the proposed algorithm, the 
number of TPs is represented as |𝑉𝑉| . In the KLA-based graph partitioning, the overall 
complexity of selecting a pair of TP is 𝑂𝑂(|𝑉𝑉| ∗ 𝑙𝑙𝑙𝑙𝑙𝑙 (|𝑉𝑉|)). Since |𝑉𝑉|/2 exchanged pairs are 
selected in one loop of KLA, each iteration of the algorithm runs in time 𝑂𝑂(|𝑉𝑉|2 ∗ log (|𝑉𝑉|)). 

 

Algorithm 1  Cell virtualization algorithm via KLA 

1     build a graph Gi = {𝒥𝒥 , E}, 𝒥𝒥 is a set of gNodeBs, E is a set of  ea,b ;
2     determine an initial partition of Gi into sets Bj and Bk;
3     do
4         calculate Za and Zb for arbitrary a in Bj and b in Bk;
5         let gv, av, and bv be empty lists;
6         Cor i:= 1 to |𝒥𝒥|/2
7             find a from Bj and b from Bk, such that gain(a, b)  is maximal;
8             remove a and b for further consideration in this pass;
9             add gain(a, b) to gv, a to av, and b to bv;
10           update Z values for each element in Bj = Bj \ a and Bk = Bk \ b
11       end

12       find n which maximizes g_max, the sum of gv[1],a,gv[n]
13       Lf (g_max > 0) then

14           exchange av[1],  av[2],a,av[n] with bv[1],bv[2],...,bv[n]
16       end
17    until(g_max <= 0)
18    repeat 3~18 until the number of Tts per sub-graph, a is reached

 
Fig. 4. The proposed association decision algorithm 

3.4 Customized Physical-cell association 
In the virtual-cell association, the association manager maps virtual cell 𝐵𝐵𝑚𝑚 with a group 

of physical TPs in a dynamic manner. However, in the physical-cell association, users will be 
associated to one or more specific TPs with the customized formulation. In this section, we 
consider the physical-cell association in one of virtual cells, 𝐵𝐵𝑚𝑚. In general, we assume each 
multi-homed user has 𝑠𝑠𝑢𝑢 radio interfaces. Here, let i ∈{1, 2,…, I } be the set of indexes of 
active interfaces in the system. User calculates ṝij as the average RSSI value between the ith 
interface and the jth TP, where i ranges from 1 to I and j ranges from 1 to J. Here, ṝij is different 
with the 𝑝𝑝𝑖𝑖𝑖𝑖, which is defined as the average RSSI value for user i from TP j. To be simple, we 
estimate the link capacity ᴪ based RSSI measurements with a Shannon-like equation in [25]: 

ᴪ =  𝛿𝛿 ∗ 𝑤𝑤 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙2(𝛼𝛼 + 𝛽𝛽 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)                                           (13) 
where 𝛿𝛿, α, and β are coefficients to be determined by curve fitting based on the actual 
measurements in the realistic scenarios, and w is the system bandwidth of TP. However, in a 
multi-user scenario for a TP, user throughput ᴪ𝑖𝑖𝑖𝑖 between the jth TP and the ith interface of user 
is 
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       ᴪ𝑖𝑖𝑖𝑖  =  𝑤𝑤𝑗𝑗 ∗𝑙𝑙𝑙𝑙𝑙𝑙2�𝛼𝛼+𝛽𝛽∗𝑟̅𝑟𝑖𝑖𝑖𝑖�
𝑛𝑛𝑗𝑗

                                                   (14)                                         

𝑛𝑛𝑗𝑗  =  ∑ 𝑎𝑎𝑖𝑖𝑖𝑖 
𝐼𝐼
𝑖𝑖=1  ,∀ 𝑗𝑗 ∈ {1,2, … , 𝐽𝐽}                                           (15)                                                  

where, nj denotes the number of users being served by the jth TP, and 𝑤𝑤𝑗𝑗 denotes the system 
bandwidth of the jth TP. In order to show the feature of customized physical association in each 
virtual cell, we present and compare three formulations mapping the interfaces of users to the 
physical TPs dynamically.  
(1) Formulation 1: Nearest-Neighbor association 

For each virtual cell, Nearest-neighbor association manager will associate each interface 
with the nearest physical TP based on the RSSI measurements from users. The distance 
between the interface and physical TP is assumed to be an estimate of the RSSI measurements. 
The goal of the Nearest-Neighbor association is to maximize the individual link throughput 
based on RSSI measurements. 

ᴪ =  𝑚𝑚𝑚𝑚𝑚𝑚 ∑ 𝑤𝑤𝑗𝑗 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙2�𝛼𝛼 + 𝛽𝛽 ∗ 𝑟̅𝑟𝑖𝑖𝑖𝑖�
𝑠𝑠𝑢𝑢
𝑖𝑖=1                                     (16) 

s.t.           ∑ 𝑎𝑎𝑖𝑖𝑖𝑖 = 1𝑠𝑠𝑢𝑢
𝑖𝑖=1 , ∀𝑢𝑢 ∈ {1,2, … ,𝑈𝑈}, ∀𝑗𝑗 ∈ {1,2, … , 𝐽𝐽}                      (17)  

where (17) means that all interfaces from the same user cannot be associated with the same TP. 
(2) Formulation 2: Pure maximum system throughput  

Equation (18) defines the main goal of the proposed model which is to find the optimal 
association that maximizes the system throughput. 

ᴪ =  𝑚𝑚𝑚𝑚𝑚𝑚 ∑ ∑ 𝑤𝑤𝑗𝑗 ∗𝑙𝑙𝑙𝑙𝑙𝑙2�𝛼𝛼+𝛽𝛽∗𝑟̅𝑟𝑖𝑖𝑖𝑖�
𝑛𝑛𝑗𝑗

𝐽𝐽
𝑗𝑗=1

𝐼𝐼
𝑖𝑖=1                                   (18) 

s.t.                                  ∑ 𝑎𝑎𝑖𝑖𝑖𝑖
𝐽𝐽
𝑗𝑗=1 = 1,    ∀𝑖𝑖 ∈ {1,2, … , 𝐼𝐼}                                      (19) 

 ∑ 𝑎𝑎𝑖𝑖𝑖𝑖 = 1𝑠𝑠𝑢𝑢
𝑖𝑖=1 , ∀𝑢𝑢 ∈ {1,2, … ,𝑈𝑈}, ∀𝑗𝑗 ∈ {1,2, … , 𝐽𝐽}                         (20) 

where constraint (19) denotes each user interface is connected to only one TP and constraint 
(20) denotes that interfaces from the same user cannot be associated to the same TP[25]. 
(3) Formulation 3: Optimal association with load balancing 
Considering user fairness, load balancing among TPs is taken as a new constraint (24) for the 
objective function (21). The number of interfaces associated to each TP should be less than the 
average load. 

                    ᴪ =  𝑚𝑚𝑚𝑚𝑚𝑚 ∑ ∑ 𝑤𝑤𝑗𝑗 ∗𝑙𝑙𝑙𝑙𝑙𝑙2�𝛼𝛼+𝛽𝛽∗𝑟̅𝑟𝑖𝑖𝑖𝑖�
𝑛𝑛𝑗𝑗

𝐽𝐽
𝑗𝑗=1

𝐼𝐼
𝑖𝑖=1                                      (21) 

s.t.                             ∑ 𝑎𝑎𝑖𝑖𝑖𝑖
𝐽𝐽
𝑗𝑗=1 = 1,    ∀𝑖𝑖 ∈ {1,2, … , 𝐼𝐼}                                          (22) 

∑ 𝑎𝑎𝑖𝑖𝑖𝑖 = 1𝑠𝑠𝑢𝑢
𝑖𝑖=1 , ∀𝑢𝑢 ∈ {1,2, … ,𝑈𝑈}, ∀𝑗𝑗 ∈ {1,2, … , 𝐽𝐽}                          (23) 

∑ 𝑎𝑎𝑖𝑖𝑖𝑖 ≤
𝐼𝐼
𝐽𝐽

𝐼𝐼
𝑖𝑖=1 ,∀𝑗𝑗 ∈ {1,2, … , 𝐽𝐽}                                           (24) 

Because both formulation 2 and 3 are nonlinear integer programming problems, we solve it 
with a branch and boundary algorithm, provided by a MATLAB toolbox,YALMIP [26]. 
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4. Simulation Results 

4.1 Scenario configuration 
In this section, the performance of the proposed algorithm with respect to the throughput 
is evaluated through simulations. All the experiments are performed in an indoor office 
scenario. 
Fig. 5 (a) illustrates the scenario of physical-cell association. In this scenario, 5 TPs are 
deployed in a square area of 40,000m2. The number of mobile users can increase from 5 to 60. 
For  a medium-scale network of 20 TPs,  Fig. 5 (b) with dimensions 500m x500m, we  
partition the network into 4 virtual cells for 4 tenants using KLA-based graph partition, as 
depicted in Algorithm 1. In each virtual cell, 5 independent cells are clustered dynamically and 
each user is assigned a maximum of two radio interfaces. The system bandwidth of each TP 
for data transmission is 20MHz with 5 TPs being deployed at the center of an area with a fixed 
radius about 200 meters. We also take an indoor office scenario into condieration. The 
relationship among RSSI, SINR and link capacity is modeled with measurements in an office 
environment.The model is built based on the curve fitting, as described in Section 3.4. We 
calculate the coefficient  α , β  and 𝛿𝛿  in Equation (13) with this curve fitting. RSSI 
measurements are derived from the path-loss model, which is defined as: 

PathLoss = 20lg(E)-20lg(D)-32.4                                      (25) 
where the carrier frequency E is set at  2.4 GHz, and D is the distance between the mobile user 
and TPs.The PathLoss is used to calculate RSSI value as follows: 

 RSSI = P- S- PathLoss                                                (26) 
where P is the transmit power of TP, which is set as -10dBm, and  S is the shadowing effect of 
obstacles in the network. S is choosen randomely  betwwen  0 and 40 in dB. 
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Fig. 5. Scenarios of small-cell deployment  

4.2 Model-oriented parameter fitting  
In order to determine the parameter α, β and δ in Equation (13) , we establish the relationship 

between RSSI and achieved throughput with actual measurements in an office environment, 
which is the curve of “realistic measurements” in Fig. 6. By the model-based curve fitting in 
MATLAB, we get α=1.733, β=0.005429, and δ =5.0. The comparison illustrated in Fig. 6 
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shows that the model-based curve fitting matches the realistic measurements well. Therefore, 
Equation (13) can be adopted as the model of user throughput.  

 
Fig. 6. Model-based curve fitting with realistic measurements 

 
The proposed physical-cell association control is evaluated in a defined scenario, as shown 

in Fig. 5(a). Three association schemes are compared: Nearest-Neighbor association, Pure 
Maximum Throughput scheme and Load Banlancing scheme. In the performance evaluation 
of the physical-cell association, 3 metrics are considered: system throughput, user experience 
and user fairness. A common configuration list is summarized in Tab. 1. 
 

Tab. 1: PARAMETERS CONFIGURATION 
Parameter and Units Setting Values 
Number of TPs 5 or 20 
Number of users dynamic, 5~60 
Number of interface 1 or 2 
Radius of coverage(m) 200  
Distance of neighbor TPs(m) random 
Frequency band(GHz) 2.4 
Transmit power(dBm) -10 
Shadowing effects(dB) (0,40)  
Bandwidth (MHz) 20 
The coefficient α 1.733 

The coefficient β 0.005429 
The coefficient 𝛿𝛿 5 
RSSI threshold for Edge user (dBm) -120 

4.3 Virtual-cell association: Static scenario 
To solve the virtual-cell association problem, we choose the graph partition algorithm 

(dynamic KLA-based network partitioning, which is proposed in this paper) due to the 
computational complexity of MINLP problem. The number of clusters K is 4. Here, the 
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performance of the proposed algorithm is compared with other schemes i.e a fixed clustering 
in a Cloud-RAN[8] and the dynamic user clustering for minimum Intra-Cluster Interference 
(ICI)[27]. Fig. 7 shows results for virtual-cell association for three different algorithms. ‘o’ 
represent TPs, and ‘*’ represent users. The result in (a) is achieved by fixed clustering in 
Cloud-RAN, the result in (b) is achieved by the KLA dynamic partitioning. Different colors 
are used for TPs and users in different VTP set. The result in (c) is achieved by minimum ICI 
clustering. 
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(a)  Fixed                                  (b) KLA                                       (c) ICI 

Fig. 7. The virtual-cell association results  
 

The effect on throughput of each VTP for three schemes is shown in Fig. 8. The KLA 
based graph partitioning algorithm achieves load balancing for each independent VTP, as it 
can adapt to dynamic user distribution with an equal number of physical TPs. However, the 
virtual-cell association in Cloud-RAN with fixed partitions leads to the degradation of 
throughput for some VTPs. That is because that it is a static clustering scheme while losing the 
correlation information of TPs and user distribution. The Minimum ICI scheme is still not 
better than KLA. It considers intra-cluster interference only while KLA considers the utility 
gain function. Therefore, the KLA algorithm can achieve mapping from virtual TP to physical 
TPs with the interference graph. It can achieve a load-balanced traffic distribution among 
physical TPs in a large scale network.  

 
Fig. 8. Virtual-cell association algorithm comparison on system throughput 

 
In order to evaluate the scalability of system throughput for the proposed KLA-based 
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number of users at 100. The results of the three algorithms are shown in Fig. 9. The system 
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throughput  benefits from the dense-deployment of small cells, although it results in inter-cell 
interference. K represents the number of TPs in one virtual cell. In this simulation, we set K as 
4 and 8. With the number of TP increases, the proposed KLA algorithm outperforms the 
minimum ICI scheme. Although the fixed partition still has a high system throughput, it results 
in unbalanced load distribution as shown in Fig. 8. In addition, the system throughput becomes 
higher with the increased number of TPs, as shown in Fig. 9.  

 
Fig. 9.  The algorithm comparison with various network scales 

4.4 Virtual-cell association: Mobility scenario 
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Fig. 10. The KLA-based results in mobility scenarios 

 
Based on the results shown in Section 4.3, it is established that KLA-based graph partition 

works in a self-organized manner. In this section, we consider mobility scenario in Fig. 10. 
The user location in Fig. 10(a) is generated uniformly in the area of 500x500 meters. In Fig. 
10(b), all users in Fig. 10(a) are moved 50 meters above the Y-axis. Those users which lies 
outside 50 meters will have to re-enter from the base of the Y-axis. As shown in Fig. 11, we 
check the system throughput and find the average user throughput in this dynamic scenario 
with user mobility. Although the mapping between VTP and physical TPs are changed 

8 16 24 32 40

The number of TPs

200

400

600

800

1000

1200

1400

1600

Sy
st

em
 th

ro
ug

hp
ut

(M
bp

s)

Fixed parition(K=4)

Fixed partition(K=8)

Minimun ICI(K=4)

Minimun ICI(K=8)

The proposed(K=4)

The proposed(K=8)



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018                        4717 

because of user mobility, system throughput and average user throughput for each VTP does 
not change. The user experience is much better than their bandwidth demands. More detailed 
simulation resultsfor each user will be examined in the physical-cell association in the 
following sections. 

 
(a) System throughput 

 
(b) User throughput 

Fig. 11. Throughput comparison on mobility scenario 
 

4.5 Physical-cell association: System throughput 
We assume each user has a single radio interface, s𝑢𝑢 = 1 in the constraint of Equation (17), 

(20) and (23). It is reasonable to assume each mobile user has one flow, and each flow has an 
unlimited bandwidth requirement. The performance of system throughput is considered for 
three association approaches. The initial user distribution in the area is uniform. The receiver 
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sensitivity of each user is configured with -120dBm. The performance comparison is 
illustrated in Fig. 12.  

  
Fig. 12.  The performance on system throughput 

 
With lots of snapshots in the simulation, Pure Maximum Throughput association can 

achieve the best system throughput by satisfying the user in a good quality channel. However , 
load distribution among multiple TPs is not balanced. Therefore, we consider load balancing 
as an additional constraint for the optimal association in formulation 3. As illustrated in Fig. 
12, Pure Maximum Throughput algorithm has the best system throughput, when the number of 
users are more than 10. The optimal association with load balancing achieves a higher system 
throughput for 10 users, but has identical systems throughput with Nearest Neighbor 
RSSI-based association for more than 20 users. 

4.6 Physical-cell association: User experience 
In Fig. 13, the individual throughput goes down when the number of users increases from 5 

to 60 in the scenario of Fig. 5(a). Especially, formulation 3 performs better on individual 
throughput than the other two association schemes. However, Pure Maximum Throughput 
association is not reliable with heavy fluctuations. Therefore, the Pure Maximum Throughput 
association leads to the worst user experience in terms of individual throughput.  

 
Fig. 13.  The performance on individual throughput 
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4.7 Physical-cell association: User fairness 
In addition to throughput, we still need to consider fairness among different users. The 

fairness index is defined as the standard variance of individual throughput. A high fairness 
index indicates unfairness among users. As shown in Fig. 14, the optimal association with load 
balancing approach performs better. Pure Maximum Throughput association, denoted in red 
curve, has the worst fairness. 
 

Fairness Index =  �(ᴪ𝑚𝑚𝑚𝑚𝑚𝑚 − ᴪ𝑚𝑚𝑚𝑚𝑚𝑚+ᴪ𝑚𝑚𝑚𝑚𝑚𝑚
2

)2 + (ᴪ𝑚𝑚𝑚𝑚𝑚𝑚 − ᴪ𝑚𝑚𝑚𝑚𝑚𝑚+ᴪ𝑚𝑚𝑚𝑚𝑚𝑚
2

)22                 (27)  
 
where  ᴪ𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum user throughput and  ᴪ𝑚𝑚𝑚𝑚𝑚𝑚 is the minimum user throughput. 
 

  
Fig. 14.  The performance on user fairness 

 

4.8 Physical-cell association: Impact of multi-homing  
Previously, mobile users are assumed to have one radio interface. In this section, we analyze 

the individual throughput in a scenario, in which mobile users can be equipped with either 
single-interface or double-interface. In this simulation, the total number of users is 30 and the 
number of double-interface users changes from 0 to 30. The results are illustrated in Fig. 15 
and Fig. 16. In Fig. 15, the average individual throughput decreases a little with the number of 
double-interface users increases. Meanwhile, double-interface users always achieve higher 
individual throughput than single-interface users.   
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Fig. 15. Individual throughput with a mixed number of interfaces  

 
Furthermore, we recorded the minimum value of individual throughputs for double-interface 
users in “white” pillar, and the maximum value of individual throughputs for single-interface 
users in “black” pillar. The results, as illustrated in Fig. 16, verify that the double-interface 
users can achieve a larger throughput than the single-interface users.   

 
Fig. 16. The comparison of individual throughput 
                (Double-interface vs. Single-interface) 

5. Conclusion 
In this paper, a framework of cell virtualization and customized user association has been 
proposed in a multiple-tenant scenario. An interference graph partitioning algorithm is 
proposed for cell virtualization in software defined small cell networks. The simulation results 
justified that the proposed virtual-cell association can achieve the better performance in terms 
of throughput. For multi-homed users, three formulations of physical-cell association are 
customized and compared. The load balancing association outperforms other schemes in term 
of system throughput and user fairness.  
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