• Title/Summary/Keyword: dendritic cell (DC)

Search Result 105, Processing Time 0.023 seconds

Induction of CD4+ Regulatory and Polarized Effector/helper T Cells by Dendritic Cells

  • Manfred B. Lutz
    • IMMUNE NETWORK
    • /
    • v.16 no.1
    • /
    • pp.13-25
    • /
    • 2016
  • Dendritic cells (DCs) are considered to play major roles during the induction of T cell immune responses as well as the maintenance of T cell tolerance. Naive CD4+ T cells have been shown to respond with high plasticity to signals inducing their polarization into effector/helper or regulatory T cells. Data obtained from in vitro generated bone-marrow (BM)-derived DCs as well as genetic mouse models revealed an important but not exclusive role of DCs in shaping CD4+ T cell responses. Besides the specialization of some conventional DC subsets for the induction of polarized immunity, also the maturation stage, activation of specialized transcription factors and the cytokine production of DCs have major impact on CD4+ T cells. Since in vitro generated BM-DCs show a high diversity to shape CD4+ T cells and their high similarity to monocyte-derived DCs in vivo, this review reports data mainly on BM-DCs in this process and only touches the roles of transcription factors or of DC subsets, which have been discussed elsewhere. Here, recent findings on 1) the conversion of naive into anergic and further into Foxp3- regulatory T cells (Treg) by immature DCs, 2) the role of RelB in steady state migratory DCs (ssmDCs) for conversion of naive T cells into Foxp3+ Treg, 3) the DC maturation signature for polarized Th2 cell induction and 4) the DC source of IL-12 for Th1 induction are discussed.

Dendritic Cell Based Cancer Immunotherapy: in vivo Study with Mouse Renal Cell Carcinoma Model (수지상세포를 이용한 항암 면역 치료: 생쥐 신장암 모델을 이용한 연구)

  • Lee, Hyunah;Choi, Kwang-Min;Baek, Soyoung;Lee, Hong-Ghi;Jung, Chul-Won
    • IMMUNE NETWORK
    • /
    • v.4 no.1
    • /
    • pp.44-52
    • /
    • 2004
  • Background: As a potent antigen presenting cell and a powerful inducer of antigen specific immunity, dendritic cells (DCs) are being considered as a promising anti-tumor therapeutic module. The expected therapeutic effect of DCs in renal cell carcinoma was tested in the mouse model. Established late-stage tumor therapeutic (E-T) and minimal residual disease (MRD) model was considered in the in vivo experiments. Methods: Syngeneic renal cell carcinoma cells (RENCA) were inoculated either subcutaneously (E-T) or intravenously (MRD) into the Balb/c mouse. Tumor cell lysate pulsed-DCs were injected twice in two weeks. Intraperitoneal DC injection was started 3 week (E-T model) or one day (MRD model) after tumor cell inoculation. Two weeks after the final DC injection, the tumor growth and the systemic immunity were observed. Therapeutic DCs were cultured from the bone marrow myeloid lineage cells with GM-CSF and IL-4 for 7 days and pulsed with RENCA cell lysate for 18 hrs. Results: Compared to the saline treated group, tumor growth (E-T model) or formation (MRD model) was suppressed in pulsed-DC treated group. RENCA specific lymphocyte proliferation was observed in the RENCA tumor-bearing mice treated with pulsed-DCs. Primary cytotoxic T cell activity against RENCA cells was increased in pulsed-DC treated group. Conclusion: The data suggest the possible anti-tumor effect of cultured DCs in established or minimal residual disease/metastasis state of renal cell carcinoma. Systemic tumor specific immunity including cytotoxic T cell activity was modulated also in pulsed-DC treated group.

In vivo Dendritic Cell Migration Tracking Using Near-infrared (NIR) Imaging (Near-infrared (NIR) 영상기법을 이용한 생체 내 수지상세포의 이동)

  • Lee, Jun-Ho;Jung, Nam-Chul;Lee, Eun Gae;Lim, Dae-Seog
    • KSBB Journal
    • /
    • v.27 no.5
    • /
    • pp.295-300
    • /
    • 2012
  • Matured dendritic cells (DCs) begin migration with their release from the bone marrow (BM) into the blood and subsequent traffic into peripheral lymphoid and non-lymphoid tissues. Throughout this long movement, migrating DCs must apply specialized skills to reach their target destination. Non-invasive in vivo cell-tracking techniques are necessary to advance immune cell-based therapies. In this study, we used a DiD cell-tracking solution for in vivo dendritic cell tracking in naive mice. We tracked DiD (non-invasive fluorescence dye)-labeled mature dendritic cells using the Near Infrared (NIR) imaging system in normal mice. We examined the immunophenotype of DiD-labeled cells compared with non-labelled mature DCs, and obtained time-serial images of NIR-DC trafficking after mouse footpad injection. In conclusion, we confirmed that DiD-labeled DCs migrated into the popliteal lymph node 24 h after the footpad injection. Here, these data suggested that the cell tracking system with the stable fluorescence dye DiD was useful as a cell tracking tool to advance dendritic cell-based immunotherapy.

Mycobacterium abscessus MAB2560 induces maturation of dendritic cells via Toll-like receptor 4 and drives Th1 immune response

  • Lee, Su Jung;Shin, Sung Jae;Lee, Seung Jun;Lee, Moon Hee;Kang, Tae Heung;Noh, Kyung Tae;Shin, Yong Kyoo;Kim, Han Wool;Yun, Cheol-Heui;Jung, In Duk;Park, Yeong-Min
    • BMB Reports
    • /
    • v.47 no.9
    • /
    • pp.512-517
    • /
    • 2014
  • In this study, we showed that Mycobacterium abscessus MAB2560 induces the maturation of dendritic cells (DCs), which are representative antigen-presenting cells (APCs). M. abscessus MAB2560 stimulate the production of pro-inflammatory cytokines [interleukin (IL)-6, tumor necrosis factor (TNF)-${\alpha}$, IL-$1{\beta}$, and IL-12p70] and reduce the endocytic capacity and maturation of DCs. Using $TLR4^{-/-}$ DCs, we found that MAB2560 mediated DC maturation via Toll-like receptor 4 (TLR4). MAB2560 also activated the MAPK signaling pathway, which was essential for DC maturation. Furthermore, MAB2560-treated DCs induced the transformation of $na\ddot{i}ve$ T cells to polarized $CD4^+$ and $CD8^+$ T cells, which would be crucial for Th1 polarization of the immune response. Taken together, our results indicate that MAB2560 could potentially regulate the host immune response to M. abscessus and may have critical implications for the manipulation of DC functions for developing DC-based immunotherapy.

Effect of Dendritic Cell Based Cancer Vaccine Using Allogeneic Tumor Cell Lysate in Melanoma Pulmonary Metastasis Model (동종 종양 세포 용해액을 이용한 수지상 세포 항암 백신의 흑색종 폐암 전이 모델에서의 효과 연구)

  • Lee, Young-Joon;Kim, Myung-Joo;In, So-Hee;Choi, Ok-Mi;Baek, So-Young;Kwon, Young-Do;Lee, Hyun-Ah
    • IMMUNE NETWORK
    • /
    • v.5 no.3
    • /
    • pp.163-171
    • /
    • 2005
  • Background: To perform the successful dendritic cell-based cancer immunotherapy one of the main issues to be solved is the source of antigen for DC pulsing. Limitations occur by using auto-tumor lysate due to the difficulties obtaining enough tumor tissue(s) quantitatively as well as qualitatively. In this study the possibility of allogeneic tumor cell lysate as a DC pulsing antigen has been tested in mouse melanoma pulmonary me tastasis model. Methods: B16F10 melanoma cells $(1{\timeS}10^5/mouse)$ were inoculated intra venously into the C57BL/6 mouse. Therapeutic DCs were cultured from the bone marrow myeloid lineage cells with GM-CSF and IL-4 (1,000 U/ml each) for 7 days and pulsed with lysate of either autologous B16F10 (B-DC), allogeneic K1735 (C3H/He origin; K-DC) or CloneM3 (DBA2 origin; C-DC) melanoma cells for 18 hrs. Pulsed-DCs $(1{\times}10^6/mouse)_{[CGP1]}$ were injected i.p. twice with one week interval starting from the day 1 after tumor cell inoculation. Results: Without observable toxicity, allogeneic tumor cell lysate pulsed-DC induced the significantly better anti-tumor response (tumor scale: $2.7{\pm}0.3,\;0.7{\pm}0.3\;and\;0.3{\pm}0.2$ for saline, B-DC and C-DC treated group, respectively). Along with increased tumor specific lymphocyte proliferations, induction of IFN-${\gamma}$ secretion against both auto- and allo-tumor cell lysates was observed from the DC treated mice. (w/B16F10-lysate: $44.97{\pm}10.31,\;1787.94{\pm}131.18,\;1257.15{\pm}48.27$, w/CloneM3 lysate: 0, $1591.13{\pm}1.83,\;1460.47{\pm}86.05pg/ml$ for saline, B-DC and C-DC treated group, respectively) Natural killer cell activity was also increased in the mice treated with tumor cell lysate pulsed-DC ($8.9{\pm}_{[CGP2]}0.1,\;11.6{\pm}0.8\;and\;12.6{\pm}0.7%$ specific NK activity for saline, B-DC and C-DC treated group, respectively). Conclusion: Conclusively, promising data were obtained that allogeneic-tumor cell lysate can be used as a tumor antigen for DC-based cancer immunotherapy.

The Mycobacterium avium subsp. Paratuberculosis protein MAP1305 modulates dendritic cell-mediated T cell proliferation through Toll-like receptor-4

  • Lee, Su Jung;Noh, Kyung Tae;Kang, Tae Heung;Han, Hee Dong;Shin, Sung Jae;Soh, Byoung Yul;Park, Jung Hee;Shin, Yong Kyoo;Kim, Han Wool;Yun, Cheol-Heui;Park, Won Sun;Jung, In Duk;Park, Yeong-Min
    • BMB Reports
    • /
    • v.47 no.2
    • /
    • pp.115-120
    • /
    • 2014
  • In this study, we show that Mycobacterium avium subsp. paratuberculosis MAP1305 induces the maturation of bone marrow-derived dendritic cells (BMDCs), a representative antigen presenting cell (APC). MAP1305 protein induces DC maturation and the production of pro-inflammatory cytokines (Interleukin (IL)-6), tumor necrosis factor (TNF)-${\alpha}$, and IL-$1{\beta}$) through Toll like receptor-4 (TLR-4) signaling by directly binding with TLR4. MAP1305 activates the phosphorylation of MAPKs, such as ERK, p38MAPK, and JNK, which is essential for DC maturation. Furthermore, MAP1305-treated DCs transform naive T cells to polarized $CD4^+$ and $CD8^+$ T cells, thus indicating a key role for this protein in the Th1 polarization of the resulting immune response. Taken together, M. avium subsp. paratuberculosis MAP1305 is important for the regulation of innate immune response through DC-mediated proliferation of $CD4^+$ and $CD8^+$ T cells.

The Prospective of Antigen-presenting Cells in Cancer Immunotherapy (항원제시세포를 이용한 암 치료제 개발전망)

  • Shim Doo-Hee;Lee Jae-Hwa
    • KSBB Journal
    • /
    • v.19 no.6 s.89
    • /
    • pp.415-420
    • /
    • 2004
  • All around the world, the rate of attack of cancer diseases has been going up and the number of cancer patients has been increasing every year. Cancer can be divided into malignant tumor and benign tumor according to its growth appearance. Many studies and experiments have been conducted and the various treatment are being created to find the way to care malignant. Dendritic cells (DCs), which is an agent of cancer treatments by using an immune reaction in our body, plays an important role to present by a tumor antigen to cytotoxic T-cell and help them to attack the tumor cell directly. However there are some defects of this therapy. Soluble human leukocyte antigen-immunoglobulin fusion protein (HLA-Ig) based artificial antigen presenting cell (aAPC) as the antigen presenting cell (APC) which is complement and overcome some of the limitations of dendritic cell-based vaccines and ex vivo expansion of human T cells is new method for cancer therapy. In this article, we are reviewing the role of DCs and the treatment with it, and searching for the possibility of the new development of immunotherapy for cancer.

Vitamin C Up-regulates Expression of CD80, CD86 and MHC Class II on Dendritic Cell Line, DC-1 Via the Activation of p38 MAPK

  • Kim, Hyung Woo;Cho, Su In;Bae, Seyeon;Kim, Hyemin;Kim, Yejin;Hwang, Young-Il;Kang, Jae Seung;Lee, Wang Jae
    • IMMUNE NETWORK
    • /
    • v.12 no.6
    • /
    • pp.277-283
    • /
    • 2012
  • Vitamin C is an essential water-soluble nutrient which primarily exerts its effect on host defense mechanisms and immune homeostasis, but the mechanism related to immune-potentiation is poorly understood. Since dendritic cells (DCs) are known as a potent antigen presenting cell (APC) that could enhance the antigen specific immune responses, we investigate the effects of vitamin C on activation of DCs and its related mechanism by using dendritic cell lines, DC-1. First, we found that there was no damage on DC-1 by 2.5 mM of vitamin C. In the presence of vitamin C, the expression of CD80, CD86, and MHC molecules was increased, but it was decreased by the pre-treatment of SB203580, p38 MAPK-specific inhibitor. We confirmed the phosphorylation of p38 MAPK was increased by the treatment of vitamin C. Taken together, these results suggest that vitamin C could enhance the activity of dendritic cells via the up-regulation of the expression of CD80, CD86, and MHC molecules and the activation of p38 MAPK is related to this process.

Effect of Lipofectin on Antigen-presenting Function and Anti-tumor Activity of Dendritic Cells (수지상세포의 항원제시 능력 및 항암활성에 미치는 Lipofectin의 영향)

  • Noh, Young-Woock;Lim, Jong-Seok
    • IMMUNE NETWORK
    • /
    • v.6 no.2
    • /
    • pp.102-110
    • /
    • 2006
  • Background: Dendritic cells (DC) are professional antigen-presenting cells in the immune system and can induce T cell response against virus infections, microbial pathogens, and tumors. Therefore, immunization using DC loaded with tumor-associated antigens (TAAs) is a powerful method of inducing anti-tumor immunity. For induction of effective anti-tumor immunity, antigens should be efficiently introduced into DC and presented on MHC class I molecules at high levels to activate antigen-specific $CD8^+$ T cells. We have been exploring methods for loading exogenous antigens into APC with high efficiency of Ag presentation. In this study, we tested the effect of the cationic liposome (Lipofectin) for transferring and loading exogenous model antigen (OVA protein) into BM-DC. Methods: Bone marrow-derived DC (EM-DC) were incubated with OVA-Lipofectin complexes and then co-cultured with B3Z cells. B3Z activation, which is expressed as the amount of ${\beta}$-galactosidase induced by TCR stimulation, was determined by an enzymatic assay using ${\beta}$-gal assay system. C57BL/6 mice were immunized with OVA-pulsed DC to monitor the in vivo vaccination effect. After vaccination, mice were inoculated with EG7-OVA tumor cells. Results: BM-DC pulsed with OVA-Lipofectin complexes showed more efficient presentation of OVA-peptide on MHC class I molecules than soluble OVA-pulsed DC. OVA-Lipofectin complexes-pulsed DC pretreated with an inhibitor of MHC class I-mediated antigen presentation, brefeldin A, showed reduced ability in presenting OVA peptide on their surface MHC class I molecules. Finally, immunization of OVA-Lipofectin complexes-pulsed DC protected mice against subsequent tumor challenge. Conclusion: Our data provide evidence that antigen-loading into DC using Lipofectin can promote MHC class I- restricted antigen presentation. Therefore, antigen-loading into DC using Lipofectin can be one of several useful tools for achieving efficient induction of antigen-specific immunity in DC-based immunotherapy.

Dendritic Cell (DC) Vaccine in Mouse Lung Cancer Minimal Residual Model: Comparison of Monocyte-derived DC vs. Hematopoietic Stem Cell Derived-DC

  • Baek, Soyoung;Lee, Seog Jae;Kim, Myoung Joo;Lee, Hyunah
    • IMMUNE NETWORK
    • /
    • v.12 no.6
    • /
    • pp.269-276
    • /
    • 2012
  • The anti-tumor effect of monocyte-derived DC (MoDC) vaccine was studied in lung cancer model with feasible but weak Ag-specific immune response and incomplete blocking of tumor growth. To overcome this limitation, the hematopoietic stem cell-derived DC (SDC) was cultured and the anti-tumor effect of MoDC & SDC was compared in mouse lung cancer minimal residual model (MRD). Therapeutic DCs were cultured from either $CD34^+$ hematopoietic stem cells with GM-CSF, SCF and IL-4 for 14 days (SDC) or monocytes with GM-CSF and IL-4 for 7 days (MoDC). DCs were injected twice by one week interval into the peritoneum of mice that are inoculated with Lewis Lung Carcinoma cells (LLC) one day before the DC injection. Anti-tumor responses and the immune modulation were observed 3 weeks after the final DC injection. CD11c expression, IL-12 and TGF-${\beta}$ secretion were higher in SDC but CCR7 expression, IFN-${\gamma}$ and IL-10 secretion were higher in MoDC. The proportion of $CD11c^+CD8a^+$ cells was similar in both DC cultures. Although both DC reduced the tumor burden, histological anti-tumor effect and the frequencies of IFN-${\gamma}$ secreting $CD8^+$ T cells were higher in SDC treated group than in MoDC. Conclusively, although both MoDC and SDC can induce the anti-tumor immunity, SDC may be better module as anti-tumor vaccine than MoDC in mouse lung cancer.