DOI QR코드

DOI QR Code

In vivo Dendritic Cell Migration Tracking Using Near-infrared (NIR) Imaging

Near-infrared (NIR) 영상기법을 이용한 생체 내 수지상세포의 이동

  • Lee, Jun-Ho (Department of Applied Bioscience, CHA University) ;
  • Jung, Nam-Chul (Department of Applied Bioscience, CHA University) ;
  • Lee, Eun Gae (Department of Applied Bioscience, CHA University) ;
  • Lim, Dae-Seog (Department of Applied Bioscience, CHA University)
  • 이준호 (차의과학대학교 바이오산업응용학과) ;
  • 정남철 (차의과학대학교 바이오산업응용학과) ;
  • 이은계 (차의과학대학교 바이오산업응용학과) ;
  • 임대석 (차의과학대학교 바이오산업응용학과)
  • Received : 2012.09.14
  • Accepted : 2012.10.24
  • Published : 2012.10.31

Abstract

Matured dendritic cells (DCs) begin migration with their release from the bone marrow (BM) into the blood and subsequent traffic into peripheral lymphoid and non-lymphoid tissues. Throughout this long movement, migrating DCs must apply specialized skills to reach their target destination. Non-invasive in vivo cell-tracking techniques are necessary to advance immune cell-based therapies. In this study, we used a DiD cell-tracking solution for in vivo dendritic cell tracking in naive mice. We tracked DiD (non-invasive fluorescence dye)-labeled mature dendritic cells using the Near Infrared (NIR) imaging system in normal mice. We examined the immunophenotype of DiD-labeled cells compared with non-labelled mature DCs, and obtained time-serial images of NIR-DC trafficking after mouse footpad injection. In conclusion, we confirmed that DiD-labeled DCs migrated into the popliteal lymph node 24 h after the footpad injection. Here, these data suggested that the cell tracking system with the stable fluorescence dye DiD was useful as a cell tracking tool to advance dendritic cell-based immunotherapy.

Keywords

References

  1. Banchereau, J., F. Briere, C. Caux, J. Davoust, S. Lebecque, Y. J. Liu, B. Pulendra, and K. Palucka (2000) Immunobiology of dendritic cells. Annu. Rev. Immunol. 18: 767-811. https://doi.org/10.1146/annurev.immunol.18.1.767
  2. Jung, N. C., H. J. Kim, M. S. Kang, J. H. Lee, J. Y. Song, H. G. Seo, Y. S. Bae, and D. S. Lim (2012) Photodynamic therapymediated DC immunotherapy is highly effective for the inhibition of established solid tumors. Cancer Lett. 324: 58-65. https://doi.org/10.1016/j.canlet.2012.04.024
  3. Lim, D. S., J. H. Kim, D. S. Lee, C. H. Yoon, and Y. S. Bae (2007) DC immunotherapy is highly effective for the inhibition of tumor metastasis or recurrence, although it is not efficient for the eradication of established solid tumors. Cancer Immunol. Immunother. 56: 1817-1829. https://doi.org/10.1007/s00262-007-0325-0
  4. Zahradova, L., K. Mollova, D. Ocadlikova, L. Kovarova, Z. Adam, M. Krejci, L. Pour, A. Krivanova, V. Sandecka, and R. Hajek (2012) Efficacy and safety of Id-protein-loaded dendritic cell vaccine in patients with multiple myeloma-phase Ii study results. Neoplasma. 59: 440-449. https://doi.org/10.4149/neo_2012_057
  5. Koski, G. K., U. Koldovsky, S. Xu, R. Mick, A. Sharma, E. Fitzpatrick, S. Weinstein, H. Nisenbaum, B. L. Levine, K. Fox, P. Zhang, and B. J. Czerniecki (2012) A novel dendritic cellbased immunization approach for the induction of durable Th1-polarized anti-HER-2/neu responses in woman with early breast cancer. J. Immunother. 35: 54-65. https://doi.org/10.1097/CJI.0b013e318235f512
  6. Legler, D. F., P. Krause, E. Scandella, E. Singer, and M. Groettrup (2006) Prostaglandin E2 is generally required for human dendritic cell migration and exerts its effect via EP2 and EP4 receptors. J. Immunol. 176: 966-973. https://doi.org/10.4049/jimmunol.176.2.966
  7. Kalinski, P. (2012) Regulation of immune responses by prostaglandin E2. J. Immunol. 188: 21-28. https://doi.org/10.4049/jimmunol.1101029
  8. Jeong, J. G. (2004) General perspective for molecular nuclear imaging. The Korean Society of Nuclear Medicine 38: 111-114.
  9. Christian, N. A., F. Benencia, M. C. Milone, G. Li, P. R. Frail, M. J. Therien, G. Coukos, and D. A. Hammer (2009) In vivo dendritic cell tracking using fluorescence lifetime imaging and nearinfrared- emissive polymersomes. Mol. Imaging Biol. 11: 167-177. https://doi.org/10.1007/s11307-008-0184-x
  10. Ahrdns, E. T., R. Flores, H. Xu, and P. A. Morel (2005) In vivo imaging platform for tracking immunotherapeutic cells. Nat. Biotechnol. 23: 983-987. https://doi.org/10.1038/nbt1121
  11. Noh, Y. W., Y. T. Lim, and B. H. Chung (2008) Noninvasive imaging of dendritic cell migration into lymph nodes using near-infrared fluorescent seminonductor nanocrystals. FASEB 22: 3908-3918. https://doi.org/10.1096/fj.08-112896
  12. Kim, S., Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni (2003) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol. 22: 93-97.
  13. Ntziachristos, V., C. Bremer, and R. Weissleder (2003) Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur. Radiol. 13: 195-208.
  14. Shah, K., E. Bureau, and D. E. Kim (2005) Glioma therapy and real-time imaging of neural precursor cell migration and tumor regression. Ann. Neurol. 57: 34-41. https://doi.org/10.1002/ana.20306
  15. Giepmans, B. N., S. R. Adams, and M. H. Ellisman (2006) The fluorescent tool-box for assessing protein location and function. Science 312: 217-224. https://doi.org/10.1126/science.1124618
  16. Sutton, E. J., T. D. Henning, B. J. Pichler, C. Bremer, and H. E. Daldrup-Link (2008) Cell tracking with optical imaging. Eur. Radiol. 18: 2021-2032. https://doi.org/10.1007/s00330-008-0984-z
  17. Julius, M. H., E. Simpson, and L. A. Herzenberg (1973) A rapid method for the isolation of functional thymus-derived murine lymphocytes. Eur. J. Immunol. 10: 645-649.