• Title/Summary/Keyword: demethylase inhibitors

Search Result 4, Processing Time 0.018 seconds

Sensitivity of the Pyrenophora teres Population in Algeria to Quinone outside Inhibitors, Succinate Dehydrogenase Inhibitors and Demethylation Inhibitors

  • Lammari, Hamama-Imene;Rehfus, Alexandra;Stammler, Gerd;Benslimane, Hamida
    • The Plant Pathology Journal
    • /
    • v.36 no.3
    • /
    • pp.218-230
    • /
    • 2020
  • Net blotch of barley caused by Pyrenophora teres (Died.) Drechsler, is one of the most destructive diseases on barley in Algeria. It occurs in two forms: P. teres f. teres and P. teres f. maculata. A total of 212 isolates, obtained from 58 fields sampled in several barley growing areas, were assessed for fungicide sensitivity by target gene analysis. F129L and G137R mitochondrial cytochrome b substitution associated with quinone outside inhibitors (QoIs) resistance, and succinate dehydrogenase inhibitors (SDHIs) related mutations (B-H277, C-N75S, C-G79R, C-H134R, and C-S135R), were analyzed by pyrosequencing. In vitro sensitivity of 45 isolates, towards six fungicides belonging to three chemical groups (QoI, demethylase inhibitor, and SDHI) was tested by microtiter technique. Additionally, sensitivity towards three fungicides (azoxystrobin, fluxapyroxad, and epoxiconazole) was assessed in planta under glasshouse conditions. All tested isolates were QoI-sensitive and SDHI-sensitive, no mutation that confers resistance was identified. EC50 values showed that pyraclostrobin and azoxystrobin are the most efficient fungicides in vitro, whereas fluxapyroxad displayed the best disease inhibition in planta (81% inhibition at 1/9 of the full dose). The EC50 values recorded for each form of net blotch showed no significant difference in efficiency of QoI treatments and propiconazole on each form. However, in the case of fluxapyroxad, epoxiconazole and tebuconazole treatments, analysis showed significant differences in their efficiency. To our knowledge, this study is the first investigation related to mutations associated to QoI and SDHI fungicide resistance in Algerian P. teres population, as well as it is the first evaluation of the sensitivity of P. teres population towards these six fungicides.

Isolation of Hepatic Drug Metabolism Inhibitors from the Seeds of Myristica fragrans

  • Shin, Kuk-Hyun;Kim, Ok-Nam;Woo, Won-Sick
    • Archives of Pharmacal Research
    • /
    • v.11 no.3
    • /
    • pp.240-243
    • /
    • 1988
  • The hexane extract from Nutmeg, the seed of Myristica fragrans significantly inhibited hepatic drug-metabolizing enzyme activity. Through systematic fractionation by $SiO_2$ column and vacuum liquid chromatography monitoring by bioassay, three components, myristicin, (I), licarin-B (II) and dehydrodiisoeugenol (III) were isolated as active principles. Compounds II and III, with a single treatment (200mg/kg, i.p.) showed not only a significant prolongation of hexobarbital-induced sleeping time but also a significant inhibition of aminopyrine N-demethylase and hexobarbital hydroxylase activities in mice. Compounds I and II provoked a sleep episode at a subhypnotic dose of HB, suggesting that they possess CNS-depressant properties.

  • PDF

Isolation of Hepatic Drug Metabolism Inhibitors from the Rhizomes of Curcuma zedoaria

  • Shin, Kuk-Hyun;Kim, Ok-Nam;Woo, Won-Sick
    • Archives of Pharmacal Research
    • /
    • v.12 no.3
    • /
    • pp.196-200
    • /
    • 1989
  • The methanolic extract of the Rhizome of Curcuma zedoaria exhibited a significant prolongation of hexobarbital (HB)-induced hypnosis. Through liquid chromatography of an ether soluble fraction. monitoring by bioassay, three sequiterpenes, germacrone (A), curzerenone (B) and germacrone epoxide (C) were isolated as active consituents. A single treatment (100-200 mg/kg, i.p.) of each compound showed not only a significant prolongation of HB-induced sleeping time but also a significant inhibition of aminopyrine N-demethylase activity in mice, and further exhibited a typical type I binding spectra with oxidized rat hepatic cytochrome P-450 induced by phenobarbital. All of the compounds provoked a sleep episode at a subhypnotic dose of HB, implying that they possess CNS depressant properties.

  • PDF

Structure-Based Virtual Screening and Biological Evaluation of Non-Azole Antifungal Agent

  • Lee, Joo-Youn;Nam, Ky-Youb;Min, Yong-Ki;Park, Chan-Koo;Lee, Hyun-Gul;Kim, Bum-Tae;No, Kyoung-Tai
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.139-143
    • /
    • 2005
  • Cytochrome P450 14${\alpha}$-sterol demethylase enzyme (CYP51) is the target a of azole type antifungals. The azole blocks the ergosterol synthesis and thereby inhibits fungal growth. A three-dimensional (3D) homology model of CYP51 from Candida albicans was constructed based on the X-ray crystal structure of CYP51 from Mycobacterium tuberculosis. Using this model, the binding modes for the substrate (24-methylene-24, 25-dihydrolanosterol) and the known inhibitors (fluconazole, voriconazole, oxiconazole, miconazole) were predicted from docking. Virtual screening was performed employing Structure Based Focusing (SBF). In this procedure, the pharmacophore models for database search were generated from the protein-ligands interactions each other. The initial structure-based virtual screening selected 15 compounds from a commercial available 3D database of approximately 50,000 molecule library, Being evaluated by a cell-based assay, 5 compounds were further identified as the potent inhibitors of Candida albicans CYP51 (CACYP51) with low minimal inhibitory concentration (MIC) range. BMD-09-01${\sim}$BMD-09-04 MIC range was 0.5 ${\mu}$g/ml and BMD-09-05 was 1 ${\mu}$g/ml. These new inhibitors provide a basis for some non-azole antifungal rational design of new, and more efficacious antifungal agents.

  • PDF