• Title/Summary/Keyword: demand model

검색결과 4,232건 처리시간 0.028초

서울시 공영주차장 군집화 및 수요 예측 (Clustering of Seoul Public Parking Lots and Demand Prediction)

  • 황정준;신영현;심효섭;김도현;김동근
    • 품질경영학회지
    • /
    • 제51권4호
    • /
    • pp.497-514
    • /
    • 2023
  • Purpose: This study aims to estimate the demand for various public parking lots in Seoul by clustering similar demand types of parking lots and predicting the demand for new public parking lots. Methods: We examined real-time parking information data and used time series clustering analysis to cluster public parking lots with similar demand patterns. We also performed various regression analyses of parking demand based on diverse heterogeneous data that affect parking demand and proposed a parking demand prediction model. Results: As a result of cluster analysis, 68 public parking lots in Seoul were clustered into four types with similar demand patterns. We also identified key variables impacting parking demand and obtained a precise model for predicting parking demands. Conclusion: The proposed prediction model can be used to improve the efficiency and publicity of public parking lots in Seoul, and can be used as a basis for constructing new public parking lots that meet the actual demand. Future research could include studies on demand estimation models for each type of parking lot, and studies on the impact of parking lot usage patterns on demand.

Development of the Plywood Demand Prediction Model

  • Kim, Dong-Jun
    • 한국산림과학회지
    • /
    • 제97권2호
    • /
    • pp.140-143
    • /
    • 2008
  • This study compared the plywood demand prediction accuracy of econometric and vector autoregressive models using Korean data. The econometric model of plywood demand was specified with three explanatory variables; own price, construction permit area, dummy. The vector autoregressive model was specified with lagged endogenous variable, own price, construction permit area and dummy. The dummy variable reflected the abrupt decrease in plywood consumption in the late 1990's. The prediction accuracy was estimated on the basis of Residual Mean Squared Error, Mean Absolute Percentage Error and Theil's Inequality Coefficient. The results showed that the plywood demand prediction can be performed more accurately by econometric model than by vector autoregressive model.

복합 퍼지모델을 이용한 디맨드 예측 제어에 관한 연구 (A Study on the Demand Forecasting Control using A Composite Fuzzy Model)

  • 김창일;성기철;유인근
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권9호
    • /
    • pp.417-424
    • /
    • 2002
  • This paper presents an industrial peak load management system for the peak demand control. Kohonen neural network and wavelet transform based techniques are adopted for industrial peak load forecasting that will be used as input data of the peak demand control. Firstly, one year of historical load data of a steel company were sorted and clustered into several groups using Kohonen neural network and then wavelet transforms are applied with Biorthogonal 1.3 mother wavelet in order to forecast the peak load of one minute ahead. In addition, for the peak demand control, composite fuzzy model is proposed and implemented in this work. The results are compared with those of conventional model, fuzzy model and composite model, respectively. The outcome of the study clearly indicates that the composite fuzzy model approach can be used as an attractive and effective means of the peak demand control.

Development of the Lumber Demand Prediction Model

  • Kim, Dong-Jun
    • 한국산림과학회지
    • /
    • 제95권5호
    • /
    • pp.601-604
    • /
    • 2006
  • This study compared the accuracy of partial multivariate and vector autoregressive models for lumber demand prediction in Korea. The partial multivariate model has three explanatory variables; own price, construction permit area and dummy. The dummy variable reflected the boom of lumber demand in 1988, and the abrupt decrease in 1998. The VAR model consists of two endogenous variables, lumber demand and construction permit area with one lag. On the other hand, the prediction accuracy was estimated by Root Mean Squared Error. The results showed that the estimation by partial multivariate and vector autoregressive model showed similar explanatory power, and the prediction accuracy was similar in the case of using partial multivariate and vector autoregressive model.

여행자 관심 기반 스마트 여행 수요 예측 모형 개발: 웹검색 트래픽 정보를 중심으로 (The Development of Travel Demand Nowcasting Model Based on Travelers' Attention: Focusing on Web Search Traffic Information)

  • 박도형
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제26권3호
    • /
    • pp.171-185
    • /
    • 2017
  • Purpose Recently, there has been an increase in attempts to analyze social phenomena, consumption trends, and consumption behavior through a vast amount of customer data such as web search traffic information and social buzz information in various fields such as flu prediction and real estate price prediction. Internet portal service providers such as google and naver are disclosing web search traffic information of online users as services such as google trends and naver trends. Academic and industry are paying attention to research on information search behavior and utilization of online users based on the web search traffic information. Although there are many studies predicting social phenomena, consumption trends, political polls, etc. based on web search traffic information, it is hard to find the research to explain and predict tourism demand and establish tourism policy using it. In this study, we try to use web search traffic information to explain the tourism demand for major cities in Gangwon-do, the representative tourist area in Korea, and to develop a nowcasting model for the demand. Design/methodology/approach In the first step, the literature review on travel demand and web search traffic was conducted in parallel in two directions. In the second stage, we conducted a qualitative research to confirm the information retrieval behavior of the traveler. In the next step, we extracted the representative tourist cities of Gangwon-do and confirmed which keywords were used for the search. In the fourth step, we collected tourist demand data to be used as a dependent variable and collected web search traffic information of each keyword to be used as an independent variable. In the fifth step, we set up a time series benchmark model, and added the web search traffic information to this model to confirm whether the prediction model improved. In the last stage, we analyze the prediction models that are finally selected as optimal and confirm whether the influence of the keywords on the prediction of travel demand. Findings This study has developed a tourism demand forecasting model of Gangwon-do, a representative tourist destination in Korea, by expanding and applying web search traffic information to tourism demand forecasting. We compared the existing time series model with the benchmarking model and confirmed the superiority of the proposed model. In addition, this study also confirms that web search traffic information has a positive correlation with travel demand and precedes it by one or two months, thereby asserting its suitability as a prediction model. Furthermore, by deriving search keywords that have a significant effect on tourism demand forecast for each city, representative characteristics of each region can be selected.

전력시장 적용을 위한 쿠르노 모델에서의 역수요함수 추정 방법 제안 (The Method for Estimating the Inverse Demand Curve of Cournot Model in Electricity Market)

  • 강동주;허진;김태현;문영환;이근대;정구형;김발호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권2호
    • /
    • pp.79-87
    • /
    • 2005
  • At present Cournot model is one of the most commonly used theories to analyze the gaming situation in oligopoly market. But there exist several problems to apply this model to electricity market. The representative one is to obtain the inverse demand curve able to be induced from the relationship between market price and demand response. In Cournot model, each player offers their generation quantity to accomplish maximum profit, which is accomplished by reducing their quantity compared with available total capacity. As stated above, to obtain the probable Cournot equilibrium to reflect real market situation, we have to induce the correct demand function first of all. Usually the correlation between price and demand appears on the long-term basis through the statistical data analysis (for example, regression analysis) or by investigating consumer utility functions of several consumer groups classified as residential, industrial, and commercial. However, the elasticity has a tendency to change continuously according to the total market demand size or the level of market price. Therefore it should be updated as trading period passes by. In this paper we propose a method for inducing and updating this price elasticity of demand function for more realistic market equilibrium.

A Proposal for Inverse Demand Curve Production of Cournot Model for Application to the Electricity Market

  • Kang Dong-Joo;Oh Tae-Kyoo;Chung Koohyung;Kim Balho H.
    • KIEE International Transactions on Power Engineering
    • /
    • 제5A권4호
    • /
    • pp.403-411
    • /
    • 2005
  • At present, the Cournot model is one of the most commonly used theories to analyze the gaming situation in an oligopoly type market. However, several problems exist in the successful application of this model to the electricity market. The representative one is obtaining the inverse demand curve able to be induced from the relationship between market price and demand response. In the Cournot model, each player offers their generation quantity to obtain maximum profit, which is accomplished by reducing their quantity compared with available total capacity. As stated above, to obtain the probable Cournot equilibrium to reflect the real market situation, we have to induce the correct demand function first of all. Usually the correlation between price and demand appears over the long-term through statistical data analysis (for example, regression analysis) or by investigating consumer utility functions of several consumer groups classified as residential, industrial, and commercial. However, the elasticity has a tendency to change continuously according to the total market demand size or the level of market price. Therefore it should be updated as the trading period passes by. In this paper we propose a method for inducing and updating this price elasticity of demand function for more realistic market equilibrium.

냉동 오징어 수요의 수입대체관계 비교 분석 -로테르담모형과 준이상수요체계를 중심으로- (Comparative Analysis of Import Substitution Relations of Frozen Squid Demand -Focused on The Rotterdam Model and The Almost Ideal Demand System-)

  • 우경원;신용민
    • 수산경영론집
    • /
    • 제53권1호
    • /
    • pp.55-72
    • /
    • 2022
  • The domestic catch of squid is decreasing every year. Import volume is increasing to replace these domestic products. Import volume is expected to increase in the future, so it is necessary to study import substitution. Therefore, in this study, after selecting frozen squid, which accounts for the majority of imported squid, as the target fish species, China, Chile and Peru, which account for the majority of frozen squid imports, will be selected as the target countries for analysis. Then, the demand function of squid is estimated using the Rotterdam model, the inverse Rotterdam model, AIDS and inverse AIDS, which are the simultaneous equation demand types, and then elasticity is derived. After that, these models are compared in terms of significance, theoretical fit and practical fit.

계절 ARIMA 모형을 이용한 여객수송수요 예측: 중앙선을 중심으로 (Forecasting Passenger Transport Demand Using Seasonal ARIMA Model - Focused on Joongang Line)

  • 김범승
    • 한국철도학회논문집
    • /
    • 제17권4호
    • /
    • pp.307-312
    • /
    • 2014
  • 본 연구는 중앙선의 여객수송수요를 효율적으로 예측하기 위한 방법으로 계절성 요인을 고려한 ARIMA 모형을 제안하였다. 특히, 최근의 관광수요를 반영하기 위하여 2013년 4월 개통되어 운행되고 있는 중부내륙권 관광전용열차(O-train, V-train)의 수요를 포함하여 예측모형을 구축하였다. 이를 위하여 2005년 1월부터 2013년 7월까지의 월별 시계열 데이터(103개)를 사용하여 최적의 모형을 선정하였으며 예측결과 중앙선의 여객 수송수요는 지속적으로 증가할 것으로 나타났다. 구축된 모형은 중앙선의 단기수요를 예측하는데 활용이 가능하다.

AN ORDER LEVEL INVENTORY MODEL FOR PERISHABLE SEASONAL PRODUCTS WITH DEMAND FLUCTUATION

  • Panda, S.;Basu, M.
    • Journal of applied mathematics & informatics
    • /
    • 제26권3_4호
    • /
    • pp.615-625
    • /
    • 2008
  • A single item order level inventory model for perishable products is considered in which a constant fraction of on hand inventory spoils per unit time. Demand linearly depends on time. The fluctuation of demand is taken into account to determine minimum total cost of the system. Both discrete and continuous fluctuations are considered. The model is developed and solved analytically for infinite time horizon. A numerical example is presented for finite time horizon. Sensitivity analysis of the model is carried out.

  • PDF