• 제목/요약/키워드: demand forecasting error

검색결과 117건 처리시간 0.026초

Supply models for stability of supply-demand in the Korean pork market

  • Chunghyeon, Kim;Hyungwoo, Lee ;Tongjoo, Suh
    • 농업과학연구
    • /
    • 제49권3호
    • /
    • pp.679-690
    • /
    • 2022
  • As the supply and demand of pork has become a significant concern in Korea, controlling it has become a critical challenge for the industry. However, compared to the demand for pork, which has relatively stable consumption, it is not easy to maintain a stable supply. As the preparation of measures for a supply-demand crisis response and supply control in the pig industry has emerged as an important task, it has become necessary to establish a stable supply model and create an appropriate manual. In this study, a pork supply prediction model is constructed using reported data from the pig traceability system. Based on the derived results, a method for determining the supply-demand crisis stage using a statistical approach was proposed. From the results of the analysis, working days, African swine fever, heat wave, and Covid-19 were shown to affect the number of pigs graded in the market. A test of the performance of the model showed that both in-sample error rate and out-sample error rate were between 0.3 - 7.6%, indicating a high level of predictive power. Applying the forecast, the distribution of the confidence interval of the predicted value was established, and the supply crisis stage was identified, evaluating supply-demand conditions.

계절형 다변량 시계열 모형을 이용한 국제항공 여객 및 화물 수요예측에 관한 연구 (A Study on International Passenger and Freight Forecasting Using the Seasonal Multivariate Time Series Models)

  • 윤지성;허남균;김삼용;허희영
    • Communications for Statistical Applications and Methods
    • /
    • 제17권3호
    • /
    • pp.473-481
    • /
    • 2010
  • 본 연구는 최근에 활발히 연구가 진행 중인 항공수요 예측을 위하여 계절형 다변량 시계열 모형을 기반으로 하고 다른 모형과의 비교를 RMSE(Root Mean Square Error)를 기준으로 비교한 것이다. 여기서 싱가폴 국제항공유가, 수출액을 추가하여 예측성능을 좋게 하고자 한다.

항공화물의 간헐적 수요예측에 대한 비교 모형 연구 - Croston모형과 Holts모형을 중심으로 - (A Comparative Model Study on the Intermittent Demand Forecast of Air Cargo - Focusing on Croston and Holts models -)

  • 유병철;박영태
    • 한국항만경제학회지
    • /
    • 제37권1호
    • /
    • pp.71-85
    • /
    • 2021
  • 기업이 물류비용을 절감할 수 있는 정교한 수요 예측 모형은 그동안 수많은 연구를 통해 다양한 방법들이 제시되었다. 이러한 연구들은 주로 수요 패턴에 의해서 적용 가능한 수요 예측 모형을 결정하고, 통계적 검증을 통해서 모형의 정확성을 판단하였다. 수요 패턴은 크게 규칙성과 불규칙성으로 나뉘어 질 수 있다. 규칙적인 패턴은 주문이 정기적이고 주문량이 일정한 경우를 의미한다. 이러한 경우에는 주로 회귀모형이나 시계열 모형을 통해서 수요를 예측하는 방법들이 사용된다. 그러나 불규칙적이고 주문량의 변동 폭이 큰 경우는 간헐적 수요(Intermittent Demand)라고 하는데, 기존의 회귀 모형이나 시계열 모형으로는 수요 예측의 오류 발생 가능성이 높기 때문이다. 간헐적 수요를 보이는 품목에 대해서는 주로 Croston모형 혹은 Holts모형 등을 사용하여 수요를 예측한다. 본 연구에서는 간헐적 수요 패턴을 보이는 항공 화물의 다양한 품목에 대해서 수요 패턴을 분석하고, 다양한 모형을 통해 수요를 예측하여 각 모형의 예측력을 비교 분석하였다. 이 과정에서 항공 화물의 품목별, 지역별로 다양한 모형의 적합도를 분석하여 항공사가 가장 효율적으로 운영할 수 있는 항공 화물의 수요 예측 모형에 대한 개발 방향을 제시하고자 함이 본 논문의 목적이다.

문화·관광부문 타당성조사를 위한 중력모형의 개선방안 (Improving the Gravity Model for Feasibility Studies in the Cultural and Tourism Sector)

  • 이혜진
    • 아태비즈니스연구
    • /
    • 제15권1호
    • /
    • pp.319-334
    • /
    • 2024
  • Purpose - The purpose of this study is to examine the gravity model commonly used for demand forecasting upon the implementation of new tourist facilities and analyze the main causation of forecasting errors to provide a suggestion on how to improve. Design/methodology/approach - This study first measured the errors in predicted values derived from past feasibility study reports by examining the cases of five national science museums. Next, to improve the predictive accuracy of the gravity model, the study identified the five most likely issues contributing to errors, applied modified values, and recalculated. The potential for improvement was then evaluated through a comparison of forecasting errors. Findings - First, among the five science museums with very similar characteristics, there was no clear indication of a decrease in the number of visitors to existing facilities due to the introduction of new facilities. Second, representing the attractiveness of tourist facilities using the facility size ratio can lead to significant prediction errors. Third, the impact of distance on demand can vary depending on the characteristics of the facility and the conditions of the area where the facility is located. Fourth, if the distance value is below 1, it is necessary to limit the range of that value to avoid having an excessively small value. Fifth, depending on the type of population data used, prediction results may vary, so it is necessary to use population data suitable for each latent market instead of simply using overall population data. Finally, if a clear trend is anticipated in a certain type of tourist behavior, incorporating this trend into the predicted values could help reduce prediction errors. Research implications or Originality - This study identified the key factors causing prediction errors by using national science museums as cases and proposed directions for improvement. Additionally, suggestions were made to apply the model more flexibly to enhance predictive accuracy. Since reducing prediction errors contributes to increased reliability of analytical results, the findings of this study are expected to contribute to policy decisions handled with more accurate information when running feasibility analyses.

MAGRU: Multi-layer Attention with GRU for Logistics Warehousing Demand Prediction

  • Ran Tian;Bo Wang;Chu Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권3호
    • /
    • pp.528-550
    • /
    • 2024
  • Warehousing demand prediction is an essential part of the supply chain, providing a fundamental basis for product manufacturing, replenishment, warehouse planning, etc. Existing forecasting methods cannot produce accurate forecasts since warehouse demand is affected by external factors such as holidays and seasons. Some aspects, such as consumer psychology and producer reputation, are challenging to quantify. The data can fluctuate widely or do not show obvious trend cycles. We introduce a new model for warehouse demand prediction called MAGRU, which stands for Multi-layer Attention with GRU. In the model, firstly, we perform the embedding operation on the input sequence to quantify the external influences; after that, we implement an encoder using GRU and the attention mechanism. The hidden state of GRU captures essential time series. In the decoder, we use attention again to select the key hidden states among all-time slices as the data to be fed into the GRU network. Experimental results show that this model has higher accuracy than RNN, LSTM, GRU, Prophet, XGboost, and DARNN. Using mean absolute error (MAE) and symmetric mean absolute percentage error(SMAPE) to evaluate the experimental results, MAGRU's MAE, RMSE, and SMAPE decreased by 7.65%, 10.03%, and 8.87% over GRU-LSTM, the current best model for solving this type of problem.

양파와 마늘가격 예측모형의 예측력 고도화 방안 (Improving Forecasting Performance for Onion and Garlic Prices)

  • 하지희;서상택;김선웅
    • 농촌계획
    • /
    • 제25권4호
    • /
    • pp.109-117
    • /
    • 2019
  • The purpose of this study is to present a time series model of onion and garlic prices. After considering the various time series models, we calculated the appropriate time series models for each item and then selected the model with the minimized error rate by reflecting the monthly dummy variables and import data. Also, we examined whether the predictive power improves when we combine the predictions of the Korea Rural Economic Institute with the predictions of time series models. As a result, onion prices were identified as ARMGARCH and garlic prices as ARXM. Monthly dummy variables were statistically significant for onion in May and garlic in June. Garlic imports were statistically significant as a result of adding imports as exogenous variables. This study is expected to help improve the forecasting model by suggesting a method to minimize the price forecasting error rate in the case of the unstable supply and demand of onion and garlic.

세계 유선인터넷 서비스에 대한 확산모형의 예측력 비교 (Comparative Evaluation of Diffusion Models using Global Wireline Subscribers)

  • 민의정;임광선
    • Journal of Information Technology Applications and Management
    • /
    • 제21권4_spc호
    • /
    • pp.403-414
    • /
    • 2014
  • Forecasting technology in economic activity is a quite intricate procedure so researchers should grasp the point of the data to use. Diffusion models have been widely used for forecasting market demand and measuring the degree of technology diffusion. However, there is a question that a model, explaining a certain market with goodness of fit, always shows good performance with markets of different conditions. The primary aim of this paper is to explore diffusion models which are frequently used by researchers, and to help readers better understanding on those models. In this study, Logistic, Gompertz and Bass models are used for forecasting Global Wireline Subscribers and the performance of models is measured by Mean Absolute Percentage Error. Logistic model shows better MAPE than the other two. A possible extension of this study may verify which model reflects characteristics of industry better.

지능을 이용한 농사 전문가 시스템 (Farming Expert System using intelligent)

  • 홍유식
    • 한국컴퓨터산업학회논문지
    • /
    • 제6권2호
    • /
    • pp.241-248
    • /
    • 2005
  • 기존의 예측 방법들은 과거의 통계적인 수치를 사용해서 미래를 예측했었다. 정확하게 농산물 가격을 예측하려면 정확한 지식과 많은 노력이 필요하다. 그러므로 이러한 문제점을 해결하기 위해서, 본 논문에서는 농산물 예측 가격을 향상하기 위해서 전처리로 퍼지 및 신경망을 사용하였다. 또한 후처리로써 예기치 못한 상황을 실시간으로 예측할 수 있는 지능형 농사 전문가시스템을 개발하였다. 시뮬레이션결과 제안된 농산물 가격 예측이 퍼지 규칙을 사용하지 않은 기존 수요예측 시스템보다 가격오차를 줄일 수 있음을 입증했다.

  • PDF

공급사슬에서 계절적 수요를 고려한 채찍효과 측도의 개발 (Quantifying the Bullwhip Effect in a Supply Chain Considering Seasonal Demand)

  • 조동원;이영해
    • 대한산업공학회지
    • /
    • 제35권3호
    • /
    • pp.203-212
    • /
    • 2009
  • The bullwhip effect refers to the phenomenon where demand variability is amplified when one moves upward a supply chain. In this paper, we exactly quantify the bullwhip effect for cases of seasonal demand processes in a two-echelon supply chain with a single retailer and a single supplier. In most of the previous research, some measures of performance for the bullwhip effect are developed for cases of non-seasonal demand processes. The retailer performs demand forecast with a multiplicative seasonal mixed model by using the minimum mean square error forecasting technique and employs a base stock policy. With the developed bullwhip effect measure, we investigate the impact of seasonal factor on the bullwhip effect. Then, we prove that seasonal factor plays an important role on the occurrence of the bullwhip effect.

VECM모형을 이용한 국내 희유금속의 수요예측모형 (A Study on Demand Forecasting Model of Domestic Rare Metal Using VECM model)

  • 김홍민;정병희
    • 품질경영학회지
    • /
    • 제36권4호
    • /
    • pp.93-101
    • /
    • 2008
  • The rare metals, used for semiconductors, PDP-LCS and other specialized metal areas necessarily, has been playing a key role for the Korean economic development. Rare metals are influenced by exogenous variables, such as production quantity, price and supplied areas. Nowadays the supply base of rare metals is threatened by the sudden increase in price. For the stable supply of rare metals, a rational demand outlook is needed. In this study, focusing on the domestic demand for chromium, the uncertainty and probability materializing from demand and price is analyzed, further, a demand forecast model, which takes into account various exogenous variables, is suggested, differing from the previously static model. Also, through the OOS(out-of-sampling) method, comparing to the preexistence ARIMA model, ARMAX model, multiple regression analysis model and ECM(Error Correction Mode) model, we will verify the superiority of suggested model in this study.