SHEKHAWAT, NIDHI;CHOI, JUNESANG;RATHIE, ARJUN K.;PRAKASH, OM
호남수학학술지
/
제37권3호
/
pp.339-352
/
2015
We aim at giving explicit expressions of $${\sum_{m,n=0}^{{\infty}}}{\frac{{\Delta}_{m+n}(-1)^nx^{m+n}}{({\rho})_m({\rho}+i)_nm!n!}$$, where i = 0, ${\pm}1$, ${\ldots}$, ${\pm}9$ and $\{{\Delta}_n\}$ is a bounded sequence of complex numbers. The main result is derived with the help of the generalized Kummer's summation theorem for the series $_2F_1$ obtained earlier by Choi. Further some special cases of the main result considered here are shown to include the results obtained earlier by Kim and Rathie and the identity due to Bailey.
능동 데이터베이스 시스템은 특정한 상태를 탐지하는 능동규칙을 도입한다. 조건부 평가는 사건이 발생할 때마다 수행되기 때문에 조건부를 처리하는 방법에 따라 시스템의 성능에 중요한 영향을 미친다. 본 논문에서는 차이트리 구조, 분류트리, 그리고 집계함수 테이블을 생성하는 전처리 기능을 갖는 조건부 처리 시스템을 제안한다. 전처리는 능동규칙을 미리 파악할 수 있는 능동 데이터베이스의 특징 때문에 도입될 수 있다. 본 논문에서는 선택연산, 조인연산, 그리고 집계함수를 효율적으로 처리할 수 있는 차이트리를 제안하고 조건부의 처리 성능을 높인다. 그리고 조인연산을 효과적으로 처리하는 분류트리와 높은 처리비용을 요구하는 집계함수를 처리하는 집계함수 테이블을 제안한다. 본 논문의 조건부 처리 시스템은 전처리 기능에서 만들어진 조건부 처리 구조 때문에 조건 비교의 횟수를 감소시켜 능동규칙에서 조건부 처리의 성능 향상을 기대할 수 있다.
본 논문에서는 3차원 강뼈대구조물의 비선형 해석 기법을 개발하였다. 본 해석은 재료적 비선형과 기하학적 비선형을 고려하였다. 재료적 비선형으로 휨에 의한 점진적인 소성화를 고려하였다. 기하학적 비선형으로 $P-{\delta}$와 $P-{\Delta}$ 효과를 고려하였다. 절점에서의 재료적 비선형성은 여러개의 화이버로 구성되어 있는 P-M 힌지 개념을 사용함으로써 고려하였다. 기하학적 비선형성은 안정함수 (Stability function)를 사용하여 고려하였다. 단 전단과 비틀림에 의해 발생하는 비선형형은 고려하지 않았다. 수치해석법으로는 수정변위증가법을 사용하였다. 본 연구에서 제안된 해석방법으로 예측된 하중-변위가 다른 해석기법의 결과들과 잘 일치하였다.
본 논문에서는 무선통신에서 데이터 변환을 위하여 2개의 계수 값에 의하여 중간 주파수를 조절할 수 있는 개선된 구조를 가지는 4차 SC Bandpass ${\sigma}-{\Delta}$ 모듈레이터 구조를 제안한다. 제안한 구조는 4차 형태의 잡음 전달함수를 원하는 형태로 변경할 수 있고, 또한 기존구조는 중간주파수 조절을 위한 다른 8개의 클록과 가변이 가능한 4개의 계수 값이 필요하지만 제안한 구조는 가변이 가능한 2개의 계수 값과 기본 클록만으로 중간주파수를 조절할 수 있다.
본 논문에서는 선별된 IF 대역의 데이터 변환을 위하여 모듈레이터의 하나의 계수값에 의하여 IF 대역 중심주파수을 조절할 수 있는 새로운 2차 SC Bandpass $\Sigma-\Delta$ 모듈레이터 구조를 제안한다. 제안한 구조는 기존구조에 비하여 2차 형태의 잡음 전달함수를 임의로 변경할 수 있고, 중심주파수 조절를 위하여 기존구조는 가변이 가능한 2개의 계수값, 기본클럭외 다른 8개의 클럭이 필요한 반면 제안한 구조는 가변이 가능한 하나의 계수값과 기본 클럭만으로 주파수를 조절할 수 있다.
Agwa, Hassan Ahmed;Khodier, Ahmed Mahmoud;Ahmed, Heba Mostaafa Atteya
Kyungpook Mathematical Journal
/
제56권3호
/
pp.777-789
/
2016
In this paper, we establish some new oscillation criteria for the second-order forced nonlinear functional dynamic equations with damping term $$(r(t)x^{\Delta}(t))^{\Delta}+q({\sigma}(t))x^{\Delta}(t)+p(t)f(x({\tau}(t)))=e(t)$$, and $$(r(t)x^{\Delta}(t))^{\Delta}+q(t)x^{\Delta}(t)+p(t)f(x({\sigma}(t)))=e(t)$$, on a time scale ${\mathbb{T}}$, where r(t), p(t) and q(t) are real-valued right-dense continuous (rd-continuous) functions [1] defined on ${\mathbb{T}}$ with p(t) < 0 and ${\tau}:{\mathbb{T}}{\rightarrow}{\mathbb{T}}$ is a strictly increasing differentiable function and ${\lim}_{t{\rightarrow}{\infty}}{\tau}(t)={\infty}$. No restriction is imposed on the forcing term e(t) to satisfy Kartsatos condition. Our results generalize and extend some pervious results [5, 8, 10, 11, 12] and can be applied to some oscillation problems that not discussed before. Finally, we give some examples to illustrate our main results.
Let ${\pi}_1,...,{\pi}_{k}$k($\geq$2) independent logistic populations such that the cumulative distribution function (cdf) of an observation from the population ${\pi}_{i}$ is $$F_{i}\;=\; {\frac{1}{1+exp{-\pi(x-{\mu}_{i})/(\sigma\sqrt{3})}}},\;$\mid$x$\mid$<\;{\infty}$$ where ${\mu}_{i}(-{\infty}\; < \; {\mu}_{i}\; <\; {\infty}$ is unknown location mean and ${\delta}^2$ is known variance, i = 1,..., $textsc{k}$. Let ${\mu}_{[k]}$ be the largest of all ${\mu}$'s and the population ${\pi}_{i}$ is defined to be 'good' if ${\mu}_{i}\;{\geq}\;{\mu}_{[k]}\;-\;{\delta}_1$, where ${\delta}_1\;>\;0$, i = 1,...,$textsc{k}$. A selection procedure based on sample median is proposed to select a subset of $textsc{k}$ logistic populations which includes all the good populations with probability at least $P^{*}$(a preassigned value). Simultaneous confidence intervals for the differences of location parameters, which can be derived with the help of proposed procedures, are discussed. If a population with location parameter ${\mu}_{i}\;<\;{\mu}_{[k]}\;-\;{\delta}_2({\delta}_2\;>{\delta}_1)$, i = 1,...,$textsc{k}$ is considered 'bad', a selection procedure is proposed so that the probability of either selecting a bad population or omitting a good population is at most 1 $P^{*}$.
The retention behavior of proteins was investigated by using hydrophobic interaction chromatography (HIC), comparing to the results obtained in reversed-phase chromatography (RPC) described in the previous paper. A SynChropak propyl column was employed with 0.05 M phosphate buffer (pH 7.0) containing sodium sulfate. Conformational changes were recognized by examining Z values as a function of sodium sulfate concentration over a range of temperature between 5 and 65$^{\circ}C$. Z values did not change significantly at the range of the temperature showing the consistent ${\Delta}H^{\circ}$ and ${\Delta}S^{\circ}$ values. The sign and the magnitude of ${\Delta}H^{\circ}$ and ${\Delta}S^{\circ}$ of proteins in HIC were compared with those obtained in RPC. The signs of ${\Delta}H^{\circ}$ and ${\Delta}S^{\circ}$ of proteins in HIC were all positive, while those of proteins in RPC were all negative. These results suggested that the retention of proteins in HIC and in RPC were entropy-driven and enthalpy-driven process, respectively. From the two different investigations, it was concluded that the retention mechanism of RPC and HIC was based on the same fundamental principle in which separation is dependent on hydrophobicity, but the retention behavior of the proteins in HIC is clearly different from that observed in RPC.
The paper is devoted to the study of fractional integration and differentiation on a finite interval [a, b] of the real axis in the frame of Hadamard setting. The constructions under consideration generalize the modified integration $\int_{a}^{x}(t/x)^{\mu}f(t)dt/t$ and the modified differentiation ${\delta}+{\mu}({\delta}=xD,D=d/dx)$ with real $\mu$, being taken n times. Conditions are given for such a Hadamard-type fractional integration operator to be bounded in the space $X^{p}_{c}$(a, b) of Lebesgue measurable functions f on $R_{+}=(0,{\infty})$ such that for c${\in}R=(-{\infty}{\infty})$, in particular in the space $L^{p}(0,{\infty})\;(1{\le}{\le}{\infty})$. The existence almost every where is established for the coorresponding Hadamard-type fractional derivative for a function g(x) such that $x^{p}$g(x) have $\delta$ derivatives up to order n-1 on [a, b] and ${\delta}^{n-1}[x^{\mu}$g(x)] is absolutely continuous on [a, b]. Semigroup and reciprocal properties for the above operators are proved.
Park, Jae Myung;Lee, Deok Ho;Yoon, Ju Han;Kim, Young Kuk;Lim, Jong Tae
충청수학회지
/
제27권2호
/
pp.327-333
/
2014
In this paper, we define the extension $f^*:[a,b]{\rightarrow}\mathbb{R}$ of a function $f:[a,b]_{\mathbb{T}}{\rightarrow}\mathbb{R}$ for a time scale $\mathbb{T}$ and show that f is Riemann delta integrable on $[a,b]_{\mathbb{T}}$ if and only if $f^*$ is Riemann integrable on [a,b].
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.