• Title/Summary/Keyword: delay control

Search Result 3,489, Processing Time 0.031 seconds

Necessary and Sufficient Stability Condition of Discrete State Delay Systems

  • Suh, Young-Soo;Ro, Young-Shick;Kang, Hee-Jun;Lee, Hong-Hee
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.501-508
    • /
    • 2004
  • A new method to solve a Lyapunov equation for a discrete delay system is proposed. Using this method, a Lyapunov equation can be solved from a simple linear equation and N-th power of a constant matrix, where N is the state delay. Combining a Lyapunov equation and frequency domain stability, a new stability condition is proposed for a discrete state delay system whose state delay is not exactly known but only known to lie in a certain interval.

Rate control to reduce bitrate fluctuation on HEVC

  • Yoo, Jonghun;Nam, Junghak;Ryu, Jiwoo;Sim, Donggyu
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.3
    • /
    • pp.152-160
    • /
    • 2012
  • This paper proposes a frame-level rate control algorithm for low delay video applications to reduce the fluctuations in the bitrate. The proposed algorithm minimizes the bitrate fluctuations in two ways with minimal coding loss. First, the proposed rate control applies R-Q model to all frames including the first frame of every group of pictures (GOP) except for the first one of a sequence. Conventional rate control algorithms do not use any R-Q models for the first frame of each GOP and do not estimate the generated-bit. An unexpected output rate result from the first frame affects the remainder of the pictures in the rate control. Second, a rate-distortion (R-D) cost is calculated regardless of the hierarchical coding structure for low bitrate fluctuations because the hierarchical coding structure controls the output bitrate in rate distortion optimization (RDO) process. The experimental results show that the average variance of per-frame bits with the proposed algorithm can reduce by approximately 33.8% with a delta peak signal-to-noise ratio (PSNR) degradation of 1.4dB for a "low-delay B" coding structure and by approximately 35.7% with a delta-PSNR degradation of 1.3dB for a "low-delay P" coding structure, compared to HM 8.0 rate control.

  • PDF

Delay-based Rate Control for Multimedia Streaming in the Internet (인터넷에서 멀티미디어 스트리밍을 위한 지연 시간 기반 전송률 제어)

  • Song Yong-Hon;Kim Nam-Yun;Lee Bong-Gyou
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9B
    • /
    • pp.829-837
    • /
    • 2006
  • Due to the internet network congestion, packets may be dropped or delayed at routers. This phenomenon degrades the quality of streaming applications that require high QoS requirements. The proposed algorithm in this paper, called DBRC(Delay-Based Rate Control), tries to cause router queue occupancy to reach a steady state or equilibrium by throttling the transmission rate of the multimedia traffics when network delays tend to increase and also probing for more bandwidth when network delays tend to decrease. Simulation results show that the proposed algorithm provides smooth transmission rate, nearly constant delay and low packet loss rates, compared with TFRC(TCP Friendly Rate Control) that is one of dominant multimedia congestion control algorithms.

Robust Stability Analysis of an Uncertain Nonlinear Networked Control System Category

  • Fei Minrui;Yi Jun;Hu Huosheng
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.172-177
    • /
    • 2006
  • In the networked control system (NCS), the uncertain network-induced delay and nonlinear controlled object are the main problems, because they can degrade the performance of the control system and even destabilize it. In this paper, a class of uncertain and nonlinear networked control systems is discussed and its sufficient condition for the robust asymptotic stability is presented. Further, the maximum network-induced delay that insures the system stability is obtained. The Lyapunov and LMI theorems are employed to investigate the problem. The result of an illustrative example shows that the robust stability analysis is sufficient.

Control of Real-Time Systems with Random Time-Delays

  • Choi, Hyoun-Chul;Hong, Suk-Kyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.348-353
    • /
    • 2003
  • This paper considers the optimal control problem in real-time control systems with random time-delays. It proposes an algorithm which uses the linear quadratic (LQ) control method and a dedicated technique to compensate for the time-delay effects. Since it is assumed that the time-delays are unknown but the probability distribution of the delays are known a priori, the algorithm considers the mean value of the time-delays as a nominal value for random delay compensation. An example is given to show the performance of the proposed algorithm, where an inverted pendulum system is controlled over a controller-area network (CAN). Simulation results show that the proposed algorithm provides good performance results. It is shown that our algorithm is comparable to existing algorithms in both computation cost and performance.

  • PDF

A Study on the Predictive Current Controller with the Compensation of Computation Time Delay in a Digital Control Systems (디지털 제어 시스템의 연산시간 지연을 고려한 예측전류제어기에 관한 연구)

  • Woo, Myung-Ho;Jeong, Seung-Gi
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2028-2032
    • /
    • 1997
  • When a high performance current control is desired, a computation time delay of a digital control system may deteriorate the control performance of a current controller. Such a non-negligible effect can be considerable in transient state. This paper deals with the modified predictive current control that compensates the time delay effects of a conventional predictive current control. The method is closely related to a local average current control and a symmetrical PWM pattern generation. Also some theoretical approaches are presented to describe the voltage saturation boundary of the power converter. For validation, the proposed method is applied to an active power filter system. The experimental results show considerable improvement in current tracking capability.

  • PDF

A Single DOF Magnetic Levitation System using Time Delay Control and Reduced-Order Observer

  • Park, Jung-Soo;Baek, Yoon-Su
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1643-1651
    • /
    • 2002
  • Magnetic levitation systems are required to have a large operating range in many applications. As one method to solve this problem, Time Delay Control (TDC) is applied to a single-axis magnetic levitation system in this paper A reduced-order observer is utilized to estimate states excluding measurable states in the control law. The system consists of a square air-core solenoid and a circular permanent magnet attached on a plastic ball. Theoretical magnetic forces of the system are obtained on the basis of the location of the magnet around the solenoid. The magnetic levitation force is obtained by the experiment, and then compared with the theoretical one. As the results of the control experiments, the nonlinear controller (TDC : 1-2 ㎜) has a larger operating range than the linear controller (PD control : 1-1.4 ㎜), and is superior to linear. control in the robustness to the modeling uncertainty and the performance of the disturbance rejection.

Vibration Control of Rotor Using Time Delay Control (시간지연 제어기법을 이용한 회전체 진동제어)

  • Xuan D.J.;Choi W.K.;Shen Y.D.;Kim Y.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1828-1831
    • /
    • 2005
  • Time Delay Control (TDC) method was proposed as a promising technique in the robust control area, where the plants have unknown dynamics with parameter variations and substantial disturbances are present. In this paper we concerns vibration control of rotor system using TDC. Based on the rotor system model, the TDC is designed, and the PD-controller is also designed for comparison. The simulation results show that the TDC is much robust than the PD-controller to the unknown dynamics with parameter variations and disturbances.

  • PDF

Robust Nonlinear Control of Air-to-Fuel Ratio in Spark Ignition Engines

  • Myoungho Sunwoo;Paljoo Yoon;Park, Seungbum;Lee, Wootaik
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.699-708
    • /
    • 2001
  • This paper presents a new approach to the AFR (Air-to-Fuel Ratio) control problem, which is based on the wide-band oxygen sensor output. The dedicated nonlinear controller is based on the feedback lineaization technique. It is well known that the feedback linearizing control technique requires an exact model of the plant for the cancellation of plant nonlinearities. A sliding mode control scheme is applied which can effectively compensate the modeling uncertainties. The measurement time delay of an oxygen sensor limits the gain of the feedback controller. Hence, time delay compensation procedure is necessary for the improvement of control performance. The Smith predictor is adopted to compensate the effects of time delay. The simulation and experimental results show that the proposed controllers can effectively reduce the transient peaks of AFR in spite of fast tip-in and tip-out maneuvers of the throttle.

  • PDF

A study on the design of a hovering flight controller for a model helicopter using time delay control (시간지연제어 기법을 이용한 모형헬리콥터의 정지비행제어기 설계)

  • 안현식;박철규;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.763-766
    • /
    • 1996
  • A model helicopter is an unstable, multi-input multi-output nonlinear system exposed to strong disturbances and its system parameters change continually. In this paper, Time Delay Control(TDC) is adopted for these reasons. TDC uses past observation of the system's response and the control input to directly modify the control action rather than adjusting the controller gains leading to a model independent robust controller. TDC can force the plant to follow an appropriate reference model, but the reference model cannot be chosen arbitrarily. In this paper the procedure of choosing a reference model and the performance of the controller are presented.

  • PDF