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Robust Stability Analysis of an Uncertain Nonlinear
Networked Control System Category

Minrui Fei, Jun Yi, and Huosheng Hu

Abstract: In the networked control system (NCS), the uncertain network-induced delay and
nonlinear controlled object are the main problems, because they can degrade the performance
of the control system and even destabilize it. In this paper, a class of uncertain and nonlinear
networked control systems is discussed and its sufficient condition for the robust asymptotic
stability is presented. Further, the maximum network-induced delay that insures the system
stability is obtained. The Lyapunov and LMI theorems are employed to investigate the problem.
The result of an illustrative example shows that the robust stability analysis is sufficient.

Keywords: Networked control system, nonlinear controlled object, robust asymptotic stability,

uncertain network-induced delay.

1. INTRODUCTION

Walsh [1], Zhang [2,3], Branicky [4,5], etc.
contribute to the research of networked control system
stability. Zhang[2] analyzed the networked control
system stability of network-induced delay in a
discontinuous system. In his paper, delay is constant,
sensor is time-driven, of which the sample cycle is 4,
and controller and actuator are event-driven. The
stability of delay 7<h and 7>=#h is analyzed and a
stable area graph for each special object is drawn.
Another aspect of stability research is that search
maximum network-induced delay for guarantee
networked control system stability, based on Riccati
equation and Lyapunov stability theorem. Walsh [1]
defined the maximum allowable time interval to
guarantee networked control system stability in the

meaning of Lyapunov stability theorem. Separately, -

Kim [6,7] and Park [8] classified maximum allowable
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delay bound to guarantee networked control system
stability for continuous and discontinuous time
models. However, all of the above researches have a
problem in that their objects are linear, non time-
varying and accurate. Lin [9] analyzed networked
control system robust stability in the condition of
uncertain delay, losing package and disturbance, but
the object is always linear and accurate, which is quite
different in the case of the actual controlled object.

In real projects, many uncertain, nonlinear objects
come into existence. A certain linear networked
control system model provides just an approximate
description of the real facts. When requesting precise
control, the control effect is greatly weakened by use
of a certain linear networked control system model.
Network-induced delay falls in the category of
uncertain delay. It is very difficult for a control system
to obtain precise design when uncertain predicted
errors exist, despite the fact that the excellent
compensation algorithm is applied. Therefore, the
robust analysis of the uncertain nonlinear networked
control system seems to be emphasized. Up to now,
almost no research concerning this aspect has been
reported. As such, the work regarding the uncertain
nonlinear networked control system is a more open
and challenging research. Obviously, the first
academic problem that needs to be solved is the robust
stability analysis of the uncertain nonlinear networked
control system.

2. NCS MODEL FOR UNCERTAIN
NONLINEAR CONTROLLED OBJECT

The typical networked control system model
structure for an uncertain controlled object is shown in
Fig. 1.
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Fig. 1. Structure graph of the uncertain nonlinear
networked control system.

Suppose 7, is delay of controller to actuator and z,
is delay of sensor to controller. As reference [10] is
concerned, control results reflect samples before
network delay r=z,.+7, by event-driven computing
strategy.

By analysis of the network-induced delay
mechanism in reference [11], network-induced delay
is either unbounded or bounded. In this paper,
network-induced delay is a random delay in which
maximum delay is bounded, namely

0< 1< 1, =max(r,, +7.,).

A class of networked control system model for an
uncertain nonlinear controlled object is given:

{ X(1) = f(x(0) + A (x()) + g(x(O)u(r - 7)

1
y = h(x), M

where state vector xeR", control input ueR, control
output yeR, f-), g(-) and A(-) are smooth vector field,

) =0, A flx) is system uncertainty, 7 is network delay.

x(H=¢(t), Vte[-1,0] is Iinitial
Hypotheses are supposed as follows:
Hypothesis 1: Span

{g(x),ad g(x), - ad ] g(x)]

condition. Four

is nonsingular involuntary distribution.
Hypothesis 2: Rank meets

r| g(x).ad rg(x),-+-,ad} g0 |=n.

Hypothesis 3:

|

and lim7(x)=0 , n(x) is positive continuous
x—0

T
[LAfh(x) LyyLrh(x) LAfo_lh(x)J H

<neofl o Lo 1o |

function.
Hypothesis 4: System (1) is zero state detectable.

3. MAIN PRINCIPLE FOR THE ROBUST
ASYMPTOTIC STABILITY

Lemma 1: For arbitrary real f >0 and arbitrary
positive definite symmetric matrix S, the following
inequation comes into existence [12]:

2uTv< Bu S u+ gV Sy
Specially, when S=1, that
2uTv<ul STTu+vT sy,

Theorem 1: For system (1), if there exists positive
definite symmetric matrixes P, Py, P,, and matrix Ky,
positive real g, g >1, the following matrix inequation
comes into existence:

[0+ &l |+ Ty (M + My +£q5 |4, 1) <0,
where

M, =inf(PA,BA P+ A" B 4),

M, =inf(PA. P AP+ 4R 4),

/ﬂmax(l’)
=BK, 6= |/—/———.
AT ﬂ‘min (Q)

Maximum network delay meets

Trax < IfAU—(-0 +&D)(M; + My + g8 4. |D7)) .

where

~Q=(A+4) P+P(4+4,),
[0 1.0 - 0] [0]
001 -0 0

A=|: 1ot ot B=|i,
000 - 1 0
000 -~ 0] 1
71 = h(x),

Zy = th(x),

2, =L h(x).
The system shows robust asymptotic stability for

arbitrariness uncertain network delay 0<7 <7, and
the control law is

u(t—7) = [LgL’J’Flh(x(z‘))J_l [Kgé(x(t —7)- L’}h(x)] .

Proof: For state variable x of system (1), consider
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new coordinate

A ] | A (xx,x,)

c=gio=| 2O || B lmm)| )

$,() | | Bu (X105 %,)

where @(x) is a smooth differentiable function in
which the contradictory map comes into existence,
that is to say, coordinate transform (2) is a
diffeomorphism. As reference [12] is concerned, two
systems in which diffeomorphism coordinate
transforms come into existence are feedback
equivalence. If one is unflappability, the other is also

unflappability.
By equations (1) and (2), we get:
£=25=22 1)+ L ap+ L gCou- )
3)
oh .
Y=ok —f( xX)+ —Af(x) +—g(X)u(l‘ —7).

According to Hypotheses 1 and 2, the comparative
rank of system (1) is #n. So Li differential satisfies:

Lgh(x) =L, Loh(x)= Ly L h(x) =

“
= LI h(x) =0 L, Lf h(x) # 0.
In the condition, choose the following
diffeomorphism transform:
71 = h(x)a

zy = Loh(x),

: ®)
z, = LT h(x).

So system (1) can transform the following standard
model:

(1) = Az(f) + Bv(t — 1) + AH(2(1)) . (6)
The control law is
-1
u(t—7) = [LgL’}‘lh(x(t))J [v(t —7)- L’}h(x)] .

(A,B) is Brounovsky standard model, in which

— 7 A

010 - 0 0
001 - 0

A=|: 1 1 1|, B=|:
000 - 1 0
0 0 0 - 0] 1]

The uncertain item is

AH(2)=[ Lyphtg™ (@) LyLoh(¢™' () -+
n-ly 1, W1F
Ly L he™ )] . )

According to Hypothesis 3,

)
-0 |z

=0. (8)

The initial condition is:
2(N) = glp() =¥ (1), Vte[-27,0].
Suppose the control law of (6)
w(t) = Kz(1) . 9)
So (1) can transform:
#(t) = Az(t) + BKz(t — 1) + AH (2(2)) .
Suppose 4, = BK , then
#(f) = Az(t) + A z(t — T) + AH (z(£)) (10)
2t 1) = 2(t) — Ji H1+6)do

- 20~ Az(t+0)+ A z(t -7 +6) ”
=20 Lo sam (1 0)) '

Then
(1) = (A + A4 )z(1) + AH (z(1)) (1)
—A, ji[Az(t +0)+ A z(t—7+60)+ AH(z(t + 0))]dO .
Define the following Lyapunov function
V(z,t) = 2(t)] Pz(t) + W(z,1), (12)
where P is positive symmetric matrix, and

W(z.1) = Ji [, 2(5) 4T R az(s)dsao

* Ji)z— .[:4_9_1- Z(S)T ATTP271ATZ(S)de0,

where P, P, is positive symmetric matrix. Obviously,
real ¢ >1 exists when r—7 <y <t,then

(13)

2nin @)z <V (2,0) < Gl P20 (14)

The above inequation can become:

| j‘max (P) .
ﬂ‘min (Q)

V(z,t) derivation along system equation (6) is:

Viz,t)=2(6)] Pz(t)+ z(t) P2(t) + W(z,1)
=W(z.0)—2() Qe(t)—{[ 4, f Az(t +0)d6Y Pz(2)
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+2() P[4, Ji Az(1 +0)do]}

({4, f Azt -1+ 6)d6] Px(r)

+2(0) P[4, Ji Az(t—7+0)d6])

114, [ A+ 0T P() (15)
20y PlA, fTAH(z(t +6))do]}

+1z(0)T PAH(2(t)) + AH (z(1))T Pz(£)}

=W(z,1) - z(£) Qz(r)
+1m(z,8) + 1y (2,0) +173(2,0) + 174 (2, 1),
where

mz0=~{14, [ Az(+6)a6] P=()

+ 2 P4, fr Az(t +6)d6]},
(a0 =14, [ 4,20~ 7 +6)do] Pz()

+ 20T P4, fr Az(t -7 +0)d6]},
m3(2.0) = {4, [ AH (z(¢ +0))d6) P

+ 200 PLA, [ AH (0 +0)a0)},
ma(z,0) = 2(t)T PAH (2(1)) + AH (2(0))" Pz(2).

As Lemma 1 is concerned, for arbitrariness positive
symmetric matrixes P, and P, we have

m(z0) <7z(t) PARA P2(0)

+ frz(t +0) AT B Az (1 + 0)d,

m(2:0) <t2() PA B4, P2(t)
; f 2 —1+0 ATP A 2(t— 7 +6)do.

As formula (8) is concerned, for arbitrariness small
positive real &>0 , positive « always exists,
allowing the following inequation to come into
existence:

:(E0)
<

[zl 2|P

“AH(z(t+€))||< £

|lz¢+6)  2|P

. Y|z0)|<a,

, V]t +0)|<a.

So we can get:

(0 zuz(t)“up“nA,n“ [ atate+ oo

14(2.0 < 2z O PlIAE )] < el

<dgqd Hz(t)“2 ,

W(z,t) derivation for ¢ is
)= [ 07 A B )-e+07 AR 0-+) o
+ [ [0 ATR 4ttt —7+607 ATB Acte—c+0) |ab
=) ( A H"1A+TATT}{1AT)Z(I)— Jiz(HH)TAT B at+6)d0
- Jiz(t—r+9)TATT Pzt -r+0)ds.  (16)
Let (16) be put into (15):
V(z,0) <~2(0) 0zt + &z +7za8) A |z
r2(6)] PABAT Pz(t) +72(t) PAB AT Pz(f) +
20 (cA R a+za B4, JEG)
=2(t) [(~Q+ D) +7eqS| A | I + 7(PARAT P+ AT B~ 4)
+7(PA AT P+ AT BT A)20). (17)

By choosing the appropriate positive symmetric
matrixes P, and P, satisfy:

PARATP+ AT A=inf(PARATP+ATR 4)= M,

PABATP+ AP 4 =infRPA B AT P+ AR 4) = M,
So inequation (17) can become:

V(z,t) <z()" {~Q +el]+7(M; + My + £q5 | A4, | D}z(r)

<z2(t) -0 + eI+ Tpa (My + M, + £g3 || 4, | D} 2(t).
Suppose

O =—{[~0+ &)+ T (M) + My + 95| 4,]| 1)} >0 .(18)
The corresponding maximum network delay is:

Tomax <INFA(—(—Q +eD)(M; + M, + £q5 |4, | D7) .

The feedback control law is:
u(t—17) = [LgL'}‘lh(x(t))]_l [K¢(x(¢ — 7)) - L’}h(x)] .

So V(x,f)<—Q; <0. Then as Hypothesis 4 is
concerned, system (1) is robust asymptotic stability.
This concludes the Proof. a

4. EXAMPLE SIMULATIONS

Consider the following networked control system
for an uncertain nonlinear controlled object:

. 2
X1 x1+x2 0
= —T)+ A
L’CJ Lﬁ—xj{nx%}u(t oy (19)
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T
where Af = [xlz siné O} , the uncertain parameter
satisfies —2<6<2. We can get:
Leh(x)=xi +x;, LgL h(x)=1+x3,
Lirh(x) = 2x13 +2x1%9 + x12 — X,

T
ad ;g (x) =[—l—x§ 1+2xf _xg] £0.

Therefore, Hypotheses 1 and 2 are true. Then
diffeomorphism coordinate transforms correspond to
equation (5) such that:

¢ z1=x, 2 :x12 +x5.

The uncertain item that corresponds to system (6)
is:

AH =[z}sin@ 2z sin HT :

Obviously, lim ”AH"
20 |z]

=0 satisfies Hypothesis 3.

By computation:

10 4 0093 0
F = [—1 —1] N P = , Pl = ’
4 10 0 ~ 0.001

0.001 0
P2 =
0 0.131

- <inf(l(—[(A +4) P+P(A+ AT)+51J*

}5:1.02, g=2, £=0.1,
7

[ M, + M, + 98] 4. 1] ) = 0.2856.

So we can choose 7,,,, =285ms , here
[+ 4) P+P(4+4.)+el |+

—4.6412  0.7487
o [ M4 M g0 = ier 76 )

The control law of system (1) is:

u(t —7) = [LgL'}_lh(x(t))]_l [v(t ~7)- L’}h(x)}
_ 5D+ -0+ % (- 7)
1+x3(0)
2640 + 25 0)x () + X () = x, (1)
1+ x3 (1) '

Consider the furthest uncertain case, choosing
@ =-x/2, the initial value is x(O):[—l.S 4]. In

these simulations, considering the furthest severity
network, network-induced delay is the maximum

x1"dat line" - x2"real line"

[0 B N

0 5 10 e ft115 20 25 30

Fig. 2. The state graph of 7, =285ms.

4 i x1 "Idot line"  x2"real Iirje"

5 20 25 30

“0 5 10

time (t}

Fig. 3. The state graph of ¢ =450ms.

x1"dot ling"  x2"real line”

e w & st et e SERWEE

0 5 10 ]5 20 25 30

time (t

Fig. 4. The state graph of 7 =500ms -

Of course,
control

delay.

T < Thaxs

when network-induced delay
capability is improved. By
simulations, it is found that not only when network

maximum delay 7, =285ms , the system has
stability (see Fig. 2), but also when 7,,,, =450ms,
the system also has stability, however system state
convergent rate becomes slower (see Fig. 3). When
network maximum delay 7., =500ms, the system
begins to become instable (see Fig. 4).
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5. CONCLUSIONS

In this paper, for an uncertain nonlinear networked
control system model, networked control system
robust stability is analyzed and the sufficient
condition for the robust asymptotic stability is
presented. Simulation results indicate that the
sufficient condition for the robust asymptotic stability
is correct. However, the results are conservative. How
to reduce conservation is one of the most important
issues needing to be addressed. Furthermore, the
sufficient condition is based on neglect of network
losing package and bandwidth limitation. If
bandwidth limitation is concerned, the problem will
be more complicated. That will be studied in the
future.
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