• 제목/요약/키워드: delamination onset strain

검색결과 5건 처리시간 0.023초

THERMAL EFFECTS ON THE STRAIN ENERGY RELEASE RATE FOR EDGE DELAMINATION IN CRACKED LAMINATED COMPOSITES

  • Soutis, C.;Kashtalyan, M.
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2001년도 제16회 학술발표회 논문초록집
    • /
    • pp.1-6
    • /
    • 2001
  • In this paper, edge delaminations in cracked composite plates are analytically investigated. A theoretical model based upon a sub-laminate approach is used to determine the strain energy release rate, $G^{ed}$, in [$\pm$$\theta_m$/$90_n$]$_s$ carbon/epoxy laminates loaded in tension. The analysis provides closed-form expressions for the reduced stiffness due to edge delamination and matrix cracking and the total energy release rate. The parameters controlling the laminate behaviour are identified. It is shown that the available energy for edge delamination is increased notably due to transverse ply cracking. Also thermal stresses increase substantially the strain energy release rate and this effect is magnified by the presence of matrix cracking. Prediction for the edge delamination onset strain is presented and compared with experimental data. The analysis could be applied to ceramic matrix composite laminates where similar mechanisms develop, but further experimental evidence is required.

  • PDF

Thermoelastic effect on inter-laminar embedded delamination characteristics in Spar Wingskin Joints made with laminated FRP composites

  • Mishra, P.K.;Pradhan, A.K.;Pandit, M.K.;Panda, S.K.
    • Steel and Composite Structures
    • /
    • 제35권3호
    • /
    • pp.439-447
    • /
    • 2020
  • This paper presents two sets of full three-dimensional thermoelastic finite element analyses of superimposed thermo-mechanically loaded Spar Wingskin Joints made with laminated Graphite Fiber Reinforced Plastic composites. The study emphasizes the influence of residual thermal stresses and material anisotropy on the inter-laminar delamination behavior of the joint structure. The delamination has been pre-embedded at the most likely location, i.e., in resin layer between the top and next ply of the fiber reinforced plastic laminated wingskin and near the spar overlap end. Multi-Point Constraint finite elements have been made use of at the vicinity of the delamination fronts. This helps in simulating the growth of the embedded delamination at both ends. The inter-laminar thermoelastic peel and shear stresses responsible for causing delamination damage due to a combined thermal and a static loading have been evaluated. Strain energy release rate components corresponding to the Mode I (opening), Mode II (sliding) and Mode III (tearing) of delamination are determined using the principle of Virtual Crack Closure Technique. These are seen to be different and non-self-similar at the two fronts of the embedded delamination. Residual stresses developed due to the thermoelastic anisotropy of the laminae are found to strongly influence the delamination onset and propagation characteristics, which have been reflected by the asymmetries in the nature of energy release rate plots and their significant variation along the delamination front.

단계적 파괴 모델에 의한 적층 복합재료의 충격거동 해석 (Impact Behavior of Laminated Composite using Progressive Failure Model)

  • 강문수;이경우;강태진
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.102-105
    • /
    • 2000
  • Recently, applications of integrated large composite structures have been attempted to many structures of vehicles. To improve the cost performance and reliability of the integrated composite structures, it is necessary to judge structural integrity of the composite structures. For the judgement, we need fracture simulation techniques for composite structures. Many researches oil the fracture simulation method using FEM have been reported by now. Most of the researches carried out simulations considering only matrix cracking and fiber breaking as fracture modes, and did not consider delamination. Several papers have reported the delamination simulation, but all these reports require three-dimensional elements or quasi three- dimensional elements for FEM analysis. Among fracture mechanisms of composite laminates, delamination is the most important factor because it causes stiffness degradation in composite structures. It is known that onset and propagation of delamination are dominated by the strain energy release rate and interfacial moment. In this study, laminated composite has been described by using 3 dimensional finite elements. Then impact behavior of the laminated composite is simulated using FEM(ABAQUS/Explicit) with progressive failure mechanism. These results are compared with experimental results.

  • PDF

압전필름센서를 이용한 복합재 평판의 저속충격 손상개시 모니터링 (Monitoring of Low-velocity Impact Damage Initiation of Gr/Ep Panel Using Piezoelectric Thin Film sensor)

  • 이관호;박찬익;김인걸;이영신
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.174-178
    • /
    • 2001
  • The piezoelectric thin film sensor can be used to interpret variations in structural and material properties, e.g. for structural integrity monitoring and assessment. To illustrate one of this potential benefit, PVDF film sensors are used for monitoring impact damage initiation in Gr/Ep composite panel. Both PVDF film sensors and strain gages are surface mounted to the Gr/Ep specimens. A series of impact test at various impact energy by changing impact mass and height is performed on the instrumented drop weight impact tester. The sensor responses are carefully examined to predict the onset of impact damage such as matrix cracking, delamination, and fiber breakage, etc. Test results show that the particular waveforms of sensor signals implying the damage initiation and development are detected above the damage initiation impact energy. As expected, the PVDF film sensor is found to be more sensitive to impact damage initiation event than the strain gage.

  • PDF

압전필름센서를 이용한 복합재 평판의 저속충격 손상개시 모니터링 (Monitoring of Low-velocity Impact Damage Initiation of Gr/Ep Panel 7sing Piezoeleetric Thin Film Sensor)

  • 박찬익;김인걸;이영신
    • Composites Research
    • /
    • 제15권2호
    • /
    • pp.11-17
    • /
    • 2002
  • 우수한 동적 감지특서을 갖는 압전필름센서는 구조 건전성 모니터링이나 평가와 같은 구조물과 재료의 변화를 분석하는데 사용될 수 있다. 압전필름센서의 이러한 특성을 이용하여 Gr/Ep 복합재 평판의 충격 손상개시를 모니터링하였다. 압전필름센서와 스트레인게이지를 Gr/Ep 복합재 평판에 부착하여 다양한 조건의 에너지에 대한 충격시험을 낙하식 충격 시험기를 사용하여 수행하였다. 충격시험을 수행하는 동안 영구압입, 기지균열, 층간분리와 같은 충격 손상개시를 예측하기 위하여 센서신호를 분석하였다. 충격에너지를 초기 손상이 발생할 수 있는 크기 이상으로 증가시키면 손상의 개시와 진전에 대한 정보를 포함하는 특정 센서 신호를 관찰할 수 있었다. 특히, 압전필름세서는 스트레인게이지 보다 충격 손상개시 및 진전에 대한 좋은 감지 특성을 보여주었다.