• Title/Summary/Keyword: dehumidifier

Search Result 91, Processing Time 0.029 seconds

The Analysis of the Effects of Design Parameters on the Energy Efficiency and Performance of TEM Dehumidifiers (열전모듈 제습기의 에너지 효율과 성능에 미치는 설계 인자의 영향 분석)

  • Lee, Tae-Hee
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.16 no.3
    • /
    • pp.1-7
    • /
    • 2020
  • To provide a design direction for high efficiency thermoelectric module(TEM) dehumidifiers, the effects of design factors of TEM dehumidifiers on dehumidification energy efficiency and performance were numerically investigated. The design factors considered in this study are the TEM capacity, the performance of heat exchangers on the heating and cooling surfaces of the TEM. The higher capacity of the TEM results the higher dehumidification energy efficiency and performance at some operating voltage. The enhanced performance of the heat exchanger on heating surface increased the dehumidification energy efficiency and performance at all the operating voltage. The enhanced performance of the heat exchanger on cooling surface decreased the dehumidification energy efficiency and performance at all operating voltage.

The application of hydrocarbon refrigerant mixtures in a hermetic reciprocating compressor for high back pressure conditions (고온용 밀폐형 왕복동 압축기에서 탄화수소계 혼합냉매 적용)

  • 김기문;박희용
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.262-269
    • /
    • 1999
  • The application of hydrocarbon refrigerant mixtures in a hermetic reciprocating compressor for dehumidifier is investigated. The selected refrigerants are R12, R134a, HC-Blend (R290/R600a), CX(R152a/R600a) and OS-l2a. Both theoretical and experimental investigations have been performed for the selected refrigerants. The test results of hydrocarbon refrigerants have been compared to traditional refrigerant(R12) and R134a. The results show that hydrocarbon refrigerant mixtures(HC-Blend, CX and OS-l2a) are very good alternatives in the refrigeration system for R12 and R134a.

  • PDF

An Experimental Study on Characteristics of Performance of Rotary Dehumidifier (회전식 제습로터의 성능특성에 관한 실험적 연구)

  • 조상준;문인호;정미정
    • Proceedings of the KAIS Fall Conference
    • /
    • 2000.10a
    • /
    • pp.78-82
    • /
    • 2000
  • 본 연구에서는 실제 사용되고 있는 제습로터의 모델(Model Ⅰ,Ⅱ,Ⅲ)을 선정하고 제습성능과 회전수 변화에 따른 성능변화의 특성을 파악하여 최적 사용조건을 확인하고자 하였다. 재생온도와 통과풍속이 일정한 조건에서 회전수 변화 및 처리측 및 재생측의 입출구 온습도 조건을 변화시키면서 성능변화를 측정하였다. 그 결과 재생온도 140℃, 통과풍속 2m/s에서의 제습성능은 Model별로 성능곡선과 대체로 잘 일치하고 있음을 확인하였으며, Model Ⅲ의 경우 상대적으로 처리측 출구온도는 높게 나타나고 있어 공기조화용으로 사용할 경우 장비에서의 열부하로 작용할 수 있는 단점은 있으나, 제습성능은 매우 우수하게 나타나고 있음을 확인하였다. 사용회전수가 Model I 의 경우 15RPH, Model Ⅱ는 약 18RPH, Model Ⅲ는 약 22.5RPH이나 실험결과 Model I과 Ⅱ 모두 약 16RPH에서 최고 성능을 보이고 있으며, Model Ⅲ는 약 20RPH에서 성능의 최고점을 나타내고 있었다.

PLC Automatic Control for IOT Based Hydroponic Plant Factory (IOT 기반 수경재배 식물공장을 위한 PLC 자동제어)

  • Ko, Jin-Han;Kim, Ho-Chan
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.487-494
    • /
    • 2019
  • In this paper, we designed IOT(Internet of Things) based hydroponic plant factory in order to avoid the effects of fine dust penetrating into the soil, and proposed the PLC(Programmable Logic Controller) control methods. The designed plant factory could monitor the density of oxygen, the density of nutrient solution, temperature and humidity through touch screen and smart phone, and control the heater and cooler, ventilation and dehumidifier, and wavelengths of LEDs to grow plant in appropriate environments.

Adsorption Properties of Indoor Air Pollutants in Blast Furnace Slag Matrix with Active Alumina Gel (활성 알루미나 겔을 혼입한 고로슬래그 경화체의 실내오염물질 흡착 특성)

  • Park, Chae-Wool;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.29-30
    • /
    • 2019
  • The indoor air quality of modern people who work indoors more than 80 percent a day has also become a very important factor in their lives. But most indoor air quality is highly polluted due to energy conservation and lack of ventilation. This can lead to pneumonia, asthma and even lung cancer, which can be fatal to children, the elderly and the elderly. Indoor pollutants are caused by boards, wallpaper, paint, etc. used in interior By producing indoor finishing materials using active alumina gel, which is used as dehumidifier, indoor pollutants will be reduced and the possibility of developing respiratory diseases and lung cancer will be reduced.

  • PDF

A Study on the Rotary Absorptive Dehumidifer (회전형 흡수식 제습기에 관한 연구)

  • Kim, Young-Il;Kim, Hyo-Kyung
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.15 no.2
    • /
    • pp.169-181
    • /
    • 1986
  • A numerical analysis has been conducted on the dehumidification phenomena of rotary absorptive dehumidifier. Parameters that affect the dehumidification efficiency, such as regeneration temperature, humidity, rotor angular velocity, air flow rate and regeneration section angle are studied and optimum driving conditions are determined from the results, Furthermore three new types of dehumidification method are developed to improve the efficiency They are named MODE 2, 3 and 4, while the present one MODE 1. Cooling zone has been constructed between regeneration and process Bone in MODE 2 and as a result exit temperature of the process air decreases. MODE 3 an improvement of MODE 2, recirculates the cooling air into the regeneration zone and regeneration input as well as exit temperature decreases. In MODE 4, some of tee regeneration air is recirculated and it cuts down the regeneration input. Among them MODE 3, showed the best dehumidification efficiency.

  • PDF

A Study on the Closed-Loop Air Drying Technology for Drying Wastewater Sludge (하수슬러지 건조를 위한 폐루프 공기건조 기술에 관한 연구)

  • Lee, Jung-Eun;Cho, Eun-Man;Kang, Dong-Hyo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.12
    • /
    • pp.821-827
    • /
    • 2012
  • Air drying is a technology to dry sludge at the ejector and multi cyclone as intaking and blowing air from outside. So, this technology has a weak point that operating fluctuation is large according to an outside conditions as well as energy consumption is also large due to open loop structure. This is to develop the closed-loop air drying system to be built the dehumidifier consisted of condenser, cooler and compressor at rear side of separator of air dryer, as a way to solve some problem. Air is circulation by the method of blowing-drying-dehumidifying-blowing within this system. It is analyzed that an air circulated at closed-loop air drying equipment contains the energy of 50% more compared with open-loop air drying and is operated regularly because of quality maintenance of air to dry sludge. And also it is analyzed that the cost of drying sludge of 1 ton by closed-loop air drying equipment is lower about 35% than conventional equipment. Therefore, this is evaluated by useful drying technology to face an unexpected climatic conditions due to regular operation as well as low energy consumption.

Effect of Air Humidity and Water Content of Medium on the Growth and Physiological Disorder of Paprika in Summer Hydroponics (여름철 착색단고추 수경재배 시 공중습도 및 배지함수량이 생육 및 과실의 생리장해에 미치는 영향)

  • Rhee, Han-Cheol;Seo, Tae-Cheol;Choi, Gyoeng-Lee;Roh, Mi-Young;Cho, Myeung-Whan
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.305-310
    • /
    • 2010
  • This study was carried out to investigate the effect of air humidity and water content of medium on the growth and physiological disorder of paprika in summer hydroponics. Treatments were composed of air humidity of control (over 90%) and dehumidification (low 90%) and water content of 80% and 50%. Time domain reflectometry (TDR) sensors and dehumidifier were used in a drip irrigation system and control system of air humidity, respectively. The early growth of paprika was not affected by air humidity but increased by high water content (80%) of medium. Mean fruit weight was reduced at high air humidity and low water content (50%) of medium, but the fruit number per plant and yield were increased at low air humidity. The incidence of brown fruit stem increased with increasing air humidity and water content of medium. Rate of blossom end rot increased in the low water content medium compared with the high water content medium. The nitrogen (N) was higher content in brown fruit stem than normal stem, but calcium (Ca) was lower.

Small-Capacity Solar Cooling System by Desiccant Cooling Technology (태양열 이용 소용량 제습냉방시스템)

  • Lee, Dae-Young;Kwon, Chi-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.154-156
    • /
    • 2008
  • A prototype of the desiccant cooling system with a regenerative evaporative cooler was built and tested for the performance evaluation. The regenerative evaporative cooler is to cool a stream of air using evaporative cooling effect without an inc6rease in the humidity ratio. It is comprised of multiple pairs of dry and wet channels and the evaporation water is supplied only to the wet channels. By redirecting a portion of the air flown out of the dry channel into the wet channel, the air can be cooled down to a temperature lower than its inlet wet-bulb temperature at the outlet end of the dry channels. Incorporating a regenerative evaporative cooler eliminates the need for deep dehumidification in the desiccant rotor that is necessary to achieve low air temperature in the system with a direct evaporative cooler. Subsequently, the regenerative evaporative cooler enables the use of low temperature heat source to regenerate the dehumidifier permitting the desiccant cooling system more beneficial compared with other thermal driven air conditioners. At the ARI condition with the regeneration temperature of $60^{\circ}C$, the prototype showed the cooling capacity of 4.4 kW and COP of 0.75.

  • PDF

A Study on Reductive Furnace for Copper Annealing Using Catalytic Combustion (촉매연소를 이용한 동 열처리용 환원로에 관한 연구)

  • Jeong, Nam-Jo;Kang, Sung-Kyu;Song, Kwang-Sup;Cho, Sung-June;Yu, Sang-Phil;Ryou, In-Su
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.83-89
    • /
    • 2001
  • Most technologies of reduction process used in the heat treatment of existent metal products are related to metals applied to bolts and parts of automobiles, and nonmetal such as copper. Heating conditions and reduction gases produced in above processes depend on types of products to be treated thermally but heating systems employ electricity commonly and the reduction gases are separated into additional production equipment and a gas dryer and inefficiently provided into the system. Electrical heating system has the advantage of convenient temperature-control but is not economical because of disadvantages of high electricity-running cost and extra installation cost of a transformer. Accordingly, development of the system which has economical heating mode in which provision of reduction gas and heating conditions are unified is necessary for improvement of economy and efficiency in current reduction processes. This study aimed to develop a new advanced heat treatment furnace using catalytic combustion. thereby minimizing the cost during heating, supplying heat and reductive gas at the same time and controlling operating condition freely by changing electrical heating system to heating system by the gas combustion and regeneration of wasted heat.

  • PDF