• Title/Summary/Keyword: degree of consolidation

Search Result 165, Processing Time 0.025 seconds

Characteristics of expansive soils improved with cement and fly ash in Northern Thailand

  • Voottipruex, Panich;Jamsawang, Pitthaya
    • Geomechanics and Engineering
    • /
    • v.6 no.5
    • /
    • pp.437-453
    • /
    • 2014
  • This paper studies the swelling and strength characteristics of unimproved and improved expansive soils in terms of the swell potential, swelling pressure, rate of secondary swelling, unconfined compressive strength and California bearing ratio (CBR). The admixtures used in this study are locally available cement and fly ash. The soils used in this study were taken from the Mae Moh power plant, Lampang Province, in northern Thailand. A conventional consolidation test apparatus was used to determine the swelling of the soil specimen. The optimum admixture contents are determined to efficiently reduce the swelling of unimproved soil. The rate of secondary swelling for unimproved soil is within the range of highly plastic montmorillonite clay, whereas the specimens improved with optimum admixture contents can be classified as non-swelling kaolinite. A soil type affects the swelling pressure. Expansive soil improvement with fly ash alone can reduce swelling percentage but cannot enhance the unconfined compressive strength and CBR. The strength and swelling characteristics can be predicted well by the swelling percentage in this study.

Optimum PVD installation depth for two-way drainage deposit

  • Chai, J.C.;Miura, N.;Kirekawa, T.;Hino, T.
    • Geomechanics and Engineering
    • /
    • v.1 no.3
    • /
    • pp.179-191
    • /
    • 2009
  • For a two-way drainage deposit under a surcharge load, it is possible to leave a layer adjacent to the bottom drainage boundary without prefabricated vertical drain (PVD) improvement and achieve approximately the same degree of consolidation as a fully penetrated case. This depth is designated as an optimum PVD installation depth. Further, for a two-way drainage deposit under vacuum pressure, if the PVDs are fully penetrated through the deposit, the vacuum pressure will leak through the bottom drainage boundary. In this case, the PVDs have to be partially penetrated, and there is an optimum installation depth. The equations for calculating these optimum installation depths are presented, and the usefulness of the equations is studied by using finite element analysis as well as laboratory model test results.

A Quantitative Approach to Minimize Energy Consumption in Cloud Data Centres using VM Consolidation Algorithm

  • M. Hema;S. KanagaSubaRaja
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.312-334
    • /
    • 2023
  • In large-scale computing, cloud computing plays an important role by sharing globally-distributed resources. The evolution of cloud has taken place in the development of data centers and numerous servers across the globe. But the cloud information centers incur huge operational costs, consume high electricity and emit tons of dioxides. It is possible for the cloud suppliers to leverage their resources and decrease the consumption of energy through various methods such as dynamic consolidation of Virtual Machines (VMs), by keeping idle nodes in sleep mode and mistreatment of live migration. But the performance may get affected in case of harsh consolidation of VMs. So, it is a desired trait to have associate degree energy-performance exchange without compromising the quality of service while at the same time reducing the power consumption. This research article details a number of novel algorithms that dynamically consolidate the VMs in cloud information centers. The primary objective of the study is to leverage the computing resources to its best and reduce the energy consumption way behind the Service Level Agreement (SLA)drawbacks relevant to CPU load, RAM capacity and information measure. The proposed VM consolidation Algorithm (PVMCA) is contained of four algorithms: over loaded host detection algorithm, VM selection algorithm, VM placement algorithm, and under loading host detection algorithm. PVMCA is dynamic because it uses dynamic thresholds instead of static thresholds values, which makes it suggestion for real, unpredictable workloads common in cloud data centers. Also, the Algorithms are adaptive because it inevitably adjusts its behavior based on the studies of historical data of host resource utilization for any application with diverse workload patterns. Finally, the proposed algorithm is online because the algorithms are achieved run time and make an action in response to each request. The proposed algorithms' efficiency was validated through different simulations of extensive nature. The output analysis depicts the projected algorithms scaled back the energy consumption up to some considerable level besides ensuring proper SLA. On the basis of the project algorithms, the energy consumption got reduced by 22% while there was an improvement observed in SLA up to 80% compared to other benchmark algorithms.

Determination of Consolidation Characteristics of Clayey Soils from the Self-boring Pressuremeter Test (자가굴착식 프레셔미터 시험을 이용한 점성토의 압밀특성 산정)

  • 장인성;정충기;김명모;조성민
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.87-96
    • /
    • 2002
  • The strain holding test(SHT) or the sell-boring pressuremeter test(SBPT) has been effectively utilized to determine the horizontal coefficient of consolidation$(c_h)$ of clayey soils. However, a commonly used procedure proposed by Clarke et al.(1979) can lead to an erroneous estimation of $(c_h)$ because of its simplified assumptions. This paper deals with numerical analyses based on realistic test conditions of the generally accepted testing procedure, and .using the most commonly used type of pressuremeter. The effects of pressuremeter geometry, partial drainage during cavity expansion, and the cavity strain level for the holding test are investigated with the radial distributions of the initial excess pore pressure and their dissipation rate. Based on the results of the numerical analyses, the curve of the time factor for the 50% degree of consolidation($T_{50}$) needed to estimate $(c_h)$ is proposed. Comparisons are made between $(c_h)$ values estimated from the SHT or the SBPT and those obtained from other in situ and laboratory tests performed at two sites in Korea. These results suggest the improved capability of the $T_{50}$ curve proposed herein.

A Simplified Method for the Calculation of Skin Friction on Piles in Soft Clay (연약 지반에 시공된 말뚝의 주면마찰력 산정 간편법)

  • Kim, Soo Il;Jeong, Sang Seom;Jung, Sung Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.171-178
    • /
    • 1994
  • The skin friction on single piles was investigated by using an analytical study and a numerical analysis. The emphasis was given to the variation of skin friction on piles based on the load transfer mechanism developed for the consolidation of a surrounding soft clay. Local yield or slip at the pile-soil interface was taken into account by specifying a limiting value of shear stress. The response of a single pile was analyzed and compared to the results of field case study. Based on the results obtained, it is shown that the skin friction on a pile increases as the degree of consolidation increases and the ultimate axial forces result from the long term behavior of clay corresponding to the end of the consolidation. It is also found that the analysis using one-dimensional consolidation theory as well as two or three-dimensional non-linear analysis gives relatively reasonable results.

  • PDF

Numerical Analysis for Consolidation of Compressible Soils (압축성 모의 압밀에 대한 수치해석 -다층토를 중심으로-)

  • Kim, Pal-Gyu;Song, Yong-Hui;Lee, Hwan-Gi
    • Geotechnical Engineering
    • /
    • v.1 no.1
    • /
    • pp.5-12
    • /
    • 1985
  • Ocassionally it is used for simple extensions of Terzahgi's theory to account for time-depend- tint loading but there is little evidence of application in more complicated consolidation theories that take into account such effects as nonlinear stress.strain, layered systems or large strains. The purpose of this paper provides an efficient computer algorthm based on numerical analysis using finite difference method which account for multi-layered soils to determine the degree of consolidation and excess pore pressures relative to time and positions more realistically. The explicitly scheme of solving the consolidation equations has been investigated from the point of view of the stability conditions and the convergence with variance of the operator as well as to obtain an optimal divided depth ratios of total depth. A comparison of the settlement predictions with both the classical analysis and the algorithm based on numerical analysis indicates that the new algorithm scheme is found to be superior to the classical theory in the layered soils.

  • PDF

Shallow ground treatment by a combined air booster and straight-line vacuum preloading method: A case study

  • Feng, Shuangxi;Lei, Huayang;Ding, Xiaodong;Zheng, Gang;Jin, Yawei
    • Geomechanics and Engineering
    • /
    • v.24 no.2
    • /
    • pp.129-141
    • /
    • 2021
  • The vacuum preloading method has been used in many countries for soil improvement and land reclamation. However, the treatment time is long and the improvement effect is poor for the straight-line vacuum preloading method. To alleviate such problems, a novel combined air booster and straight-line vacuum preloading method for shallow ground treatment is proposed in this study. Two types of traditional vacuum preloading and combined air booster and straight-line vacuum preloading tests were conducted and monitored in the field. In both tests, the depth of prefabricated vertical drains (PVDs) is 4.5m, the distance between PVDs is 0.8m, and the vacuum preloading time is 60 days. The prominent difference between the two methods is when the preloading time is 45 days, the injection pressure of 250 kPa is adopted for combined air booster and straight-line vacuum preloading test to inject air into the ground. Based on the monitoring data, this paper systematically studied the mechanical parameters, hydraulic conductivity, pore water pressure, settlement and subsoil bearing capacity, as determined by the vane shear strength, to demonstrate that the air-pressurizing system can improve the consolidation. The consolidation time decreased by 15 days, the pore water pressure decreased to 60.49%, and the settlement and vane shear strengths increased by 45.31% and 6.29%, respectively, at the surface. These results demonstrate the validity of the combined air booster and straight-line vacuum preloading method. Compared with the traditional vacuum preloading, the combined air booster and straight-line vacuum preloading method has better reinforcement effect. In addition, an estimation method for evaluating the average degree of consolidation and an empirical formula for evaluating the subsoil bearing capacity are proposed to assist in engineering decision making.

Parametric study on flexible footing resting on partially saturated soil

  • Singh, Mandeep;Sawant, V.A.
    • Coupled systems mechanics
    • /
    • v.3 no.2
    • /
    • pp.233-245
    • /
    • 2014
  • Coupled finite element analysis is carried out to study the effect of degree of saturation on the vertical displacements and pore water pressures simultaneously by developing a FORTRAN90 code. The finite element formulation adopted in the present study is based upon Biot's consolidation theory to include partially saturated soils. Numerical methods are applied to a two-dimensional plane strain strip footing (flexible) problem and the effect of variable degree of saturation on the response of excess pore water pressure dissipation and settlement of the footing is studied. The immediate settlement in the case of partly saturated soils is larger than that of a fully saturated soil, the reason being the presence of pore air in partially saturated soils. On the other hand, the excess pore water pressure for partially saturated soil are smaller than those for fully saturated soil.

A Study of Governing Factors on the Engineering Behaviour of a Single Pile in Consolidating Ground (압밀이 진행중인 지반에 설치된 말뚝의 공학적 거동을 지배하는 주요인자들에 대한 연구)

  • Kim, Sung-Hee;Jeon, Young-Jin;Kim, Jeong-Sub;Lee, Cheol-Ju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.5
    • /
    • pp.5-16
    • /
    • 2017
  • In the present work, a number of advanced three-dimensional (3D) parametric finite element numerical analyses have been conducted to study the behaviour of a single pile in consolidating ground from coupled consolidation analyses. A single pile with typical minimum and maximum ranges of fill height and clay stiffness has been modelled. The computed results demonstrate that the higher the height of the fill above the clay surface and the smaller the stiffness of the clay, the higher the dragloads and the negative skin friction-induced pile settlements. It has been found that the development of dragloads and pile settlement is more governed by the stiffness of the clay rather than the height of the fill. Positive shaft resistance is mobilised only after the average degree of consolidation is larger than 50%. Although the pile is installed when the degree of consolidation is 50% or more, relatively large negative skin friction can nevertheless develop on the pile. On the other hand, when a load is applied on the pile experiencing an increase in the negative skin friction with time during consolidation, the pile undergoes a large increase in the final settlement of up to 95% compared to that of a pile without axial load on the pile head. The allowable pile capacity when there is negative skin friction on the pile is reduced by about 4-11% compared to a pile without negative skin friction.

A Fundamental Study on Evaluation of Corrected Compression Index by Plasticity Index in Marine Clayey Soils (해성 점성토의 소성지수에 따른 보정압축지수 평가에 관한 기초연구)

  • Park, Seong-Bak;Lee, Kang-Il;Seo, Se-Gwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.3
    • /
    • pp.9-18
    • /
    • 2018
  • The soil parameters important for the design of the soft ground are the compression index ($C_c$), the consolidation settlement and consolidation speed at the field. Compression index is obtained by laboratory consolidation test. In the laboratory consolidation test, sample disturbance always occurs. In order to correct the disturbance phenomena, the method of calculating the compression index proposed by Schmertmann (1955) is generally used. However, recent developments in sampling technology and Korean soil conditions are different from those proposed by Schmertmann. So it needs to be verified. In this study, each consolidation curve's cross void ratio is evaluated by doing consolidation test varying disturbance on high-plastic clay (CH), low-plastic clay (CL) and low-plastic silt (ML). The test results were $0.521e_0$ for low-plastic silt, $0.404e_0$ for low-plastic clay, and $0.458e_0$ for the high-plastic clay. This results were different from those of Schmertmann's suggested value of $0.42e_0$. Therefor we proposed a correction formula using the plastic index according to soil type. However, since the results of this study are limited test results, further studies on various korean soil are needed to suggest the compression index correction method according to the degree of plasticity index of soil.