• Title/Summary/Keyword: degraded material

Search Result 368, Processing Time 0.034 seconds

DEGRADATION CHARACTERISTICS OF SOME TROPICAL FEEDS IN THE RUMEN

  • Navaratne, H.V.R.G.;Ibrahim, M.N.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.1 no.1
    • /
    • pp.21-25
    • /
    • 1988
  • The rumen degradability of rice straw (untreated, urea-sprayed, urea-treated), grasses (Panicum maximum, Pennisetum clandestinum) and rice bran was compared. The mean in vivo organic matter digestibility of the untreated (US), urea-supplemented (SS) and urea-ammonia treated (TS) rice straw were 50.9, 53.9 and 57.4%, respectively. Rice bran contained extremely high levels of acid-insoluble ash (25.2% DM), and its OMD was 36.1%. Grasses had OMD values around 66%. Degradability measurements were performed with buffaloes using the nylon bag technique. The organic matter (OM) disappearance data were fitted to an model which was used to describe degradation pattern. The mean potentially degradable fraction for US, SS and TS was 61.5, 61.9 and 69.4%, respectively. Urea-ammonia treatment increased both the amount of OM degraded and the rate at which it was degraded in the rumen. Both grasses had similar values for degradable fraction (around 65%) and for rate constant for degradation (0.04). Rice bran contained high proportions of readily soluble material (23.9%), but the degradable OM fraction was only 13.2%. The low quality of rice bran is attributed to the contamination of rice hulls during processing.

An Evaluation of Cast Stainless Steel (CF8M) Fracture Toughness Caused by Thermal Aging at 43$0^{\circ}C$

  • Kwon, Jae-Do;Ihn, Jae-Hyuj;Park, Joong-Cheul;Park, Sung-Jong
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.902-910
    • /
    • 2002
  • Cast stainless steel may experience embrittlement when it is exposed approximately to 300$\^{C}$ for a long period. In the present investigation, the three classes of the thermally-aged CF8M specimen were prepared using an artificially-accelerated aging method. After the specimens were held for 300, 1800 and 3600hrs. at 430$\^{C}$, respectively, the specimens were quenched in water which is at room temperature. Load versus load line displacement curves and J-R curves were obtained using the unloading compliance method. talc values were obtained using the ASTM E813-87 and ASTM E 813-81 methods. In addition to these methods, talc values were obtained using the SZW (stretch zone width) method described in JSME S 001-1981. The results of the unloading compliance method are J$\_$Q/=543.9kJ/㎡ for virgin materials. The values of J$\_$IC/ for the degraded materials at 300, 1800 and 3600hrs. are obtained 369.25kJ/㎡, 311.02kJ/㎡, 276.7kJ/㎡, respectively. The results obtained by the SZW method are compared with those obtained by the unloading compliance method. Both results are quite similar. Through the elastic-plastic fracture toughness test, it is found that the value of loc is decreased with an increase of the aging time.

Photocatalyst Surface Properties of the Oxide Thin Films According to the Plasma Etching Process (플라즈마 에칭공정에 따른 산화물 박막의 광촉매 표면 특성)

  • Lee, Chang-Hyun;Seo, Sung-Bo;Oh, Ji-Yong;Jin, Ik-Hyeon;Sohn, Sun-Young;Kim, Hwa-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.5
    • /
    • pp.300-305
    • /
    • 2015
  • $WO_3$, $SiO_2$, and $TiO_2$ films with hydrophilic property are deposited by rf-magnetron sputtering. Their wettability is strongly depends on the presence or absence of the oxygen plasma etching on the glass substrates. The $TiO_2$ film of 50 nm-thick on the plasma etched glass shows a water contact angle (WCA) below $5^{\circ}$ which means a super-hydrophilic surface. However, WCA values are gradually degraded when the films are exposed under atmosphere, especially $WO_3$. In order to improve hydrophilic property, the degraded films can be again recovered by UV illumination for 10 sec using UV-light and the $TiO_2$ film shows a super-hydrophilic surface about $3^{\circ}$.

Estimation of Strength Loss and Decay Severity of Juniperus procera by Juniper Pocket Rots Fungus, P. demidoffii in Ethiopian Forests

  • Assefa, Addisu
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.2
    • /
    • pp.143-155
    • /
    • 2020
  • A juniper pocket rot fungus, Pyrofomes demidoffii is a basidiomycetous fungus responsible for damage of living Juniperus spp. However, its effect on the residual strength and on the extent of decay of juniper's trunk was not determined in any prior studies. The purpose of this study was to study the features of J. procera infected by P. demdoffii, and to estimate the level of strength loss and decay severity in the trunk at D.B.H height using different five formulas. Infected juniper stands were examined in two Ethiopian forests through Visual Tree Assessment (VTA) followed by a slight destructive drilling of the trunk at D.B.H height. The decayed juniper tree is characterized by partially degraded lignin material at incipient stage of decay to completely degraded lignin material at final stage of decay. In the evaluated formulas, results of ANOVA showed that a significantly higher mean percentage of strength loss and decay severity were recorded in the trees of larger D.B.H categories (p<0.001). The strength loss formulas produced the same to similar patterns of sum of ranks of strength loss or decay severity in the trunk, but the differences varied significantly among D.B.H categories in Kruskal Wallis-test (p<0.001). In conclusion, the employed formulas showed similar to different degree of variability in quantification of strength loss or decay severity in the trunk. The findings of our study could be used as the baseline for further study on juniper's strength loss or decays in the trunk of Juniperus spp. and unequivocally helps to design the corresponding management as result of P. demidoffii.

Creep Damage Evaluation of Cr-Mo Steel High-Temperature Pipeline Material for Fossil Power Plant Using Ultrasonic Test Method (초음파법을 이용한 Cr-Mo강 고온배관재료의 크리프손상 평가)

  • Lee, Sang-Guk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.1
    • /
    • pp.18-26
    • /
    • 2000
  • Boiler high-temperature pipelines such as main steam pipe, header and steam drum in fossil power plants are degraded by creep damage due to severe operating conditions such as high temperature and high pressure for an extended period time. Conventional measurement techniques(replica method, electric resistance method, and hardness test method) for measuring creep damage have such disadvantages as complex preparation and measurement procedures, too many control parameters. And also these techniques have low practicality and applied only to component surfaces with good accessibility. In this paper, artificial creep degradation test and ultrasonic measurement for their creep degraded specimens(Cr-Mo alloy steels) were carried out for the purpose of evaluation for creep damage. Absolute measuring method of quantitative ultrasonic measurement for material degradation was established, and long term creep degradation tests using life prediction formula were carried out. As a result of ultrasonic tests for crept specimens. we conformed that both the sound velocity decreased and attenuation coefficient linearly increased in proportion to the Increase of creep life fraction($\Phi$c).

  • PDF

Effect of Mechanical Mixing Intenstiy on Composting (교반강도가 퇴비화에 미치는 영향)

  • Hwang, Seon-Suk;Hwang, Eui-Young;Namkoong, Wan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.3 no.2
    • /
    • pp.47-57
    • /
    • 1995
  • The purpose of this study was to investigate the effect of mechanical mixing intensity on composting. The major parameters investigated were the mixing intensity and initial moisture content. Laboratory scale composting reactors with mixing equipment were used in this study. Wastes used for the study were raw nightsoil sludge, nightsoil sludge after vacuum evaporation treatment and pig manure. When moisture contents were 60% and 63%, amount of organic material degraded in the continuous mixing reactors was higher than that in the intermittent mixing reactors. Compost produced from reactors with continuous mixing had better texture than that obtained from reactors with intermittent mixing. When moisture content was 68%, organic waste was kneaded rather than mixed in the continuous mixing reactors. Amount of organic material degraded in the continuous mixing reactors also was lower than that in the intermittent mixing reactors.

  • PDF

Microstructure, Mechanical and Wear Properties of Hot-pressed $Si_3N_4-TiB_2$ Composite

  • Kim, Hyun-Jin;Lee, Soo-Whon;Tadachika Nakayama;Koichi Niihara
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.324-330
    • /
    • 1999
  • $Si_3N_4$-$TiB_2$ with 2 wt% $Al_2O_3$ and 4 wt% $Y_2O_3$ additives was hot pressed in a flowing $N_2$ environment with varying $TiB_2$ content from 10 to 50 vol%. Variations of mechanical (hardness, fracture toughness, and flexual strength), and tribological properties as a function of $TiB_2$ content were investigated. As the content of $TiB_2$ increased, relative density decreased due to the chemical reaction of $TiB_2$in $N_2$ environment. The reduction of density causes mechanical properties to be degraded with an increase of $TiB_2$ in $Si_3N_4$. Tribological properties were dependent of microstructure as well as mechanical properties, however, they were degraded strongly by the chemical reaction of $Si_3N_4$-$TiB_2$ during hot pressing in $N_2$ environment. SEM and TEM observations, and X-ray diffraction analysis that the chemical reaction products at the interface are TiCN, Si, and $SiO_2$. Also, the comparison of XRD patterns of the $Si_3N_4$-40 vol% $TiB_2$ composites hot pressed at $1,750^{\circ}C$ for 1 hour between in $N_2$ and in Ar gas was made. The XRD peaks of Si and $SiO_2$ were not found in Ar, but still a weak peak of TiCN was presented.

  • PDF

Conversion of Brown Materials, Crude Lipids, Crude Proteins and Aromatic Compounds of Changed Ginseng by 9 Repetitive Steaming and Drying Process (인삼의 구증구폭(九蒸九曝)에 의한 갈변물질, 조지방, 조단백 및 향기성분의 변화)

  • Kim, Do-Wan;Lee, Yun-Jin;Min, Jin-Woo;Lee, Bum-Soo;In, Jun-Gyo;Yang, Deok-Chun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.333-339
    • /
    • 2008
  • Korean ginseng (Panax ginseng C. A. Meyer) has been used as an important medicinal plant in the Orient for a long time. It has been claimed that ginseng has many beneficial bioactive effects on human health, such as antitumor, antistress, antiaging and enhancing immune functions. Red ginseng possibly have new ingredients converted during steaming and dry process from fresh ginseng. Kujeungkupo method which means 9 repetitive steaming and drying process was used for the processes of green tea, Polygonatum odoratum, and Rehmanniae radix preparata. In this study, ingredient conversion of ginseng by 9 repetitive steaming and drying process were investigated measuring conversion efficiency of brown materials, crude lipids, crude proteins and aromatic compounds. Brown materials, as an antioxidant, in red ginseng were produced through non-enzymatic reaction by heat. Repetitive steaming and drying treatments on ginseng root contiunously increased the content of brown materials and the chromaticity. Crude lipids were degraded by heat and converted into volatile aromatic ingredients. Crude lipids were degraded and decreased by 0.52% after the 5th and 7th. Crude proteins were also decomposed and converted to amino acid. Crude proteins after the 9th treatment were decreased by more than 85% as increased times of treatments. A bicyclogermacrene as aromatic material was decreased as increased treatment times, while but a aromatic caramel was increased.

A Study on Material Degradation and Fretting Fatigue Behavior (재질 열화와 프레팅 피로거동 평가에 관한 연구)

  • Gwon, Jae-Do;Seong, Sang-Seok;Choe, Seong-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1287-1293
    • /
    • 2001
  • Fretting is a potential degradation mechanism of structural components and equipments exposed to various environments and loading conditions. The fretting degradation, for example, for example, can be observed in equipments of nuclear, fossil as well as petroleum chemical plants exposed to special environments and loading conditions. It is well known that a cast stainless steel(CF8M) used in a primary reactor coolant(RCS) degrades seriously when that material is exposed to temperature range from 290$\^{C}$∼390$\^{C}$ for long period. This degradation can be resulted into a catastrophical failure of components. In the present paper, the characteristics of the fretting fatigue are investigated using the artificially aged CF8M specimen. The specimen of CF8M are prepared by an artificially accelerated aging technique holding 180hr at 430$\^{C}$ respectively. Through the investigations, the simple fatigue endurance limit of the virgin specimen is not altered from that obtained from the fatigue tests imposed the fretting fatigue. The similar tests are performed using the degraded specimen. The results are not changed from those of the virgin specimen. The significant effects of fretting fatigue imposed on both virgin and degraded specimen on the fatigue strength are not found.

Study on the characteristic of liner and cover material by accelerating agent type (급결제 종류에 따른 광산 차수재의 특성 연구)

  • Cho, Yong-Kwang;Nam, Seong-Young;Lee, Yong-Mu;Kim, Chun-Sik;Seo, Shin-Seok;Jo, Sung-Hyun;Lee, Hyoung-Woo;Ahn, Ji-Whan
    • Journal of Environmental Science International
    • /
    • v.27 no.2
    • /
    • pp.75-81
    • /
    • 2018
  • At present research on mining backfill materials is being carried out to prevent ground subsidence and breaking by underground cavern of exhausted mines. However, backfill materials can cause secondary environmental issues such as ground pollution. To solve these issues, liner and cover materials are constructed before backfill materials constructed, to inhibit toxic substances form moving to the surroundings. Liner and cover materials, however, should have an accelerating performance after construction and when the accelerating performance is degraded, the work efficiency can be lowered, and the construction cost can be increased, by many rebound content. Therefore, this study develops mining liner and cover materials, and evaluates their accelerating performance and physical properties of liner and cover materials by types and content of accelerating agent. In case of aluminate accelerating agent, it is mixed with more than 5% of liner and cover materials(binder/ratio); thus an accelerating performance satisfying Korean Industrial Standards(KS) occurs, and in case of alkali-free accelerating agent, when it is mixed with more than 7%(binder/ratio), accelerating performance satisfying KS occurs. The more the accelerating agent capacity increases, the more compressive strength decreases. In addition, it is confirmed that compressive strength of aluminate accelerating agent is more degraded than compressive strength of the alkali-free accelerating agent. It is also confirmed that drying shrinkage stability of the alkali-free accelerating agent is better than the drying shrinkage stability of the aluminate accelerating agent.