• Title/Summary/Keyword: degradation test

Search Result 1,845, Processing Time 0.043 seconds

Effect of Fluorination of Carbon Nanotubes on Physico-chemical and EMI Shielding Properties of Polymer Composites (고분자 복합재의 물리화학적 및 전자파차폐 특성에 미치는 탄소나노튜브의 불소화 영향)

  • Lee, Si-Eun;Kim, Doyoung;Lee, Man Young;Lee, Min-Kyung;Jeong, Euigyung;Lee, Young-Seak
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.114-121
    • /
    • 2015
  • Mutli-walled carbon nanotubes (MWCNTs) were surface-modified by a hydrofluoric acid solution to remove impurities and improve interfacial bonding and dispersion of nanotubes in an epoxy matrix. The crystallinity on the surface of treated MWCNTs was investigated by X-ray photoelectron spectroscopy and Raman spectroscopy. The mechanical properties were characterized by tensile test, and the enhancement of mechanical properties of the modified MWCNTs/epoxy composites was indicated by a 33% increase in tensile strength. The electromagnetic interference shielding effectiveness (EMI-SE) of modified MWCNTs/epoxy composites was improved with an increase in concentration of hydrofluoric solution, and EMI-SE showed the maximum increase with 25% HF. However, mechanical and EMI-SE properties didn't show further increase with over 50% HF concentration because the properties of MWCNTs were influenced by degradation of crystallinity and intrinsic properties of MWCNTs. The mechanical and electrical property enhancements of the polymer composites are attributed to the modification of MWCNTs which improve crystallinity of MWCNTs and dispersion in the epoxy resin.

Autotrophic Perchlorate-Removal Using Elemental Sulfur Granules and Activated Sludge: Batch Test (원소 황 입자와 활성 슬러지를 이용한 독립영양방식의 퍼클로레이트 제거: 회분배양연구)

  • Han, Kyoung-Rim;Kang, Tae-Ho;Kang, Hyung-Chang;Kim, Kyung-Hun;Seo, Deuk-Hwa;Ahn, Yeong-Hee
    • Journal of Life Science
    • /
    • v.21 no.10
    • /
    • pp.1473-1480
    • /
    • 2011
  • Perchlorate ($ClO_4^-$) is a contaminant found in surface water and soil/ground water. Microbial removal of perchlorate is the method of choice since microorganisms can reduce perchlorate into harmless end-products. Such microorganisms require an electron donor to reduce perchlorate. Conventional perchlorate-removal techniques employ heterotrophic perchlorate-reducing bacteria that use organic compounds as electron donors to reduce perchlorate. Since continuous removal of perchlorate requires a continuous supply of organic compounds, heterotrophic perchlorate removal is an expensive process. Feasibility of autotrophic perchlorate-removal using elemental sulfur granules and activated sludge was examined in this study. Granular sulfur is relatively inexpensive and activated sludge is easily available from wastewater treatment plants. Batch tests showed that activated sludge microorganisms could successfully degrade perchlorate in the presence of granular sulfur as an electron donor. Perchlorate biodegradation was confirmed by molar yield of $Cl^-$ as the perchlorate was degraded. Scanning electron microscope revealed that rod-shaped microorganisms on the surface of sulfur particles were used for the autotrophic perchlorate-removal, suggesting that sulfur particles could serve as supporting media for the formation of biofilm as well. DGGE analyses revealed that microbial profile of the inoculum (activated sludge) was different from that of the biofilm sample obtained from enrichment culture that used sulfur particles for $ClO_4^-$-degradation.

Evaluation of Microcracks in Thermal Damaged Concrete Using Nonlinear Ultrasonic Modulation Technique (비선형 초음파 변조 기법을 이용한 열손상 콘크리트의 미세균열 평가)

  • Park, Sun-Jong;Yim, Hong Jae;Kwak, Hyo-Gyung
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.651-658
    • /
    • 2012
  • This paper concentrates on the evaluation of microcracks in thermal damaged concrete on the basis of the nonlinear ultrasonic modulation technique. Since concrete structure exposed to high temperature accompanies the development of microcracks due to the physical and chemical changes from temperature and exposed time, the adoption of nonlinear approach is required. Instead of using the conventional ultrasonic nondestructive methods which have the limitation in evaluating excessive microcracks, accordingly, a nonlinear ultrasonic modulation method which shows better sensitivity in quantifying microcracks is introduced. Upon the analysis for the modulation of ultrasonic wave and low frequency impact to measure the nonlinearity parameter, which can be used as an indicator of thermal damage, the verification processes for the introduced technique are followed: SEM investigation and permeable pore space test are performed to characterize thermally induced microcracks in concrete, and ultrasonic pulse velocity tests are performed to confirm the outstanding sensitivity of nonlinear ultrasonic modulation technique. In advance, compressive strength of thermal damaged concrete is measured to represent the effect of microcracks on performance degradation. Correlation studies between experimental data and measured data show that nonlinear ultrasonic modulation technique can effectively be used to quantify thermally induced microcracks, and to estimate the compressive strength of thermally damaged concrete.

A Study on the Worst Stress Condition Test Evaluation of Blowers for Small Stationary Fuel Cell System (소용량 건물용 연료전지시스템 블로워의 가혹조건 평가에 관한 연구)

  • Kim, Kangsoo;Lee, Deokkwon;Lee, Jungwoon;Kim, Eunjung;Kim, Inchan;Kim, Younggyu;Shin, Hunyong
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.34-40
    • /
    • 2012
  • The fuel cell is one of the renewable energy sources. And it is a new source of energy that can be applied to various fuels and continuously supported by the excellent city-gas infrastructure. It is important to improve performances and reliabilities, and reduce the cost of fuel cell systems for commercialization. And, some safety performances of blower domestically produced are evaluated and some improvements are researched to save the cost of fuel cell systems. In this paper, the performance and worst stress condition of blowers are evaluated in operating environment similar to the fuel cell systems. Actually, the correlation of flow, leakage and thermal behavior are evaluated in the worst stress condition at $70^{\circ}C$ and, some major factors of blower degradation such as a motor deterioration, material and structures of the outlet are examined.

A Study on the Influence of S Shaped Annular Duct on the Centrifugal Compressor Performance (S자형 환형덕트가 원심압축기 성능에 미치는 영향에 관한 연구)

  • 정주현;전승배;김승우
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.2
    • /
    • pp.64-73
    • /
    • 1998
  • In twin spool aero-engine, there may be a S shaped annular duct between high pressure and low pressure spools. The flow passing this S shaped duct experiences the flow acceleration and deceleration due to the convex and concave surface of the duct as well as the increase of blockage according to the boundary layer growth along the surfaces. So, the high pressure compressor which is located behind the S shaped duct is influenced by the non-uniform flow field generated by the geometry of inlet duct. To study the influence of the S shaped duct on the centrifugal stage, performance tests were implemented for the compressor with straight cylindrical inlet duct and with S shaped inlet duct, respectively. The test results showed that the performance, such as pressure ratio and efficiency, of the compressor with S shaped duct was worse than that of the compressor with cylindrical duct. And the compressor with S shaped duct had reduced maximum flow rate around design speed. To investigate the cause of performance degradation, flow anlaysis was performed for the impeller in front of which is located S shaped annular duct. The result of CFD showed the strong acceleration of the flow in the axial direction around the inducer tip region which caused the increase of relative mach number and the decrease of incidence angle of the flow.

  • PDF

Quality Improvement on Upper Gastrointestinal Series (위장조영검사에서 화질 개선 방법)

  • Lim, Byung-Hak;Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.6
    • /
    • pp.395-401
    • /
    • 2016
  • Upper gastrointestinal series is a diagnostic test that X-ray passes through the stomach after administering contrast media such as barium or gastrografin. Upper gastrointestinal series with an advantage of no side effect except temporary constipation or abdominal pain has been widely used to diagnose diseases of the gastrointestinal system. However, image degradation and diagnostic accuracy frequently occurred when improper movement and breath control were carried out by lack of understanding the overall inspection process for the upper gastrointestinal series. The movie of the upper gastrointestinal series was made for improving inspection accuracy and image quality. The examinees encouraged to see the movie for waiting time before doing upper gastrointestinal series. In this study, image quality and diagnostic accuracy was examined for the effect of the movie about upper gastrointestinal series. 60 patients composed of each 10 people from 30s to 80s were selected randomly among both 2,940 examinees in 2014 and 3,076 examinees in 2015. Image quality was evaluated by the full width at half maximum of profile for each image using the Image J. The measurement of the full width at half maximum showed 0.208 mm and 0.133 mm for after and before seeing the movie. Thus it was verified that the movie education could improve the image quality and diagnostic accuracy for upper gastrointestinal series.

A Study on the oxidation characteristics of micro-algal bio diesel derived from Dunaliella tertiolecta LB999 (Dunaliella tertiolecta LB999 유래 바이오디젤의 산화특성 연구)

  • Lee, Don-Min;Lee, Mi-Eun;Ha, Jong-Han;Ryu, Jin-Young;Choi, Chang-Yong;Shim, Sang-Hyuk;Lim, Sang-Min;Lee, Choul-Gyun;Lee, Bong-Hee
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • Bio diesel has advantages to reduce GHG(Greenhouse Gas) compare with the fossil fuel by using oil comes from plant/animal sources and even waste such as used cook oil. The diversity of energy feeds brings the positive effects to secure the national energy mix. In this circumstance, micro-algae is one of the prospective source, though some technical barriers. We analyzed the bio diesel which was derived from Dunaliella tertiolecta LB999 through the BD100 quality specifications designated by the law. From that result, it is revealed that the oxidation stability is one of the properties to be improved. In order to find the reason for low oxidation stability, we analyzed the oxidation tendency of each FAME components through some methods(EN 14111, EN14112, EN16091). In this study, we could find the higher double bond FAME portion, the more oxidative property(C18:1${\ll}C18:3$) in bio diesel and main unsaturated FAME group is acted as the key component deciding the bio diesel's oxidation stability. It is proved experimentally that C18:3 FAME are oxidized easily under the modified accelerated oxidation test. We also figure out low molecular weight hydrocarbon and FAME were founded as a result of thermal degradation. Some alcohol and aldehydes were also made by FAME oxidation. In conclusion, it is necessary to find the way to improve the micro-algal bio diesel's oxidation stability.

An Experimental Study on the Resistance to Penetration of Harmful Ions in Surface Coatings Material Containing Organic Corrosion inhibitor (유기계 방청제를 혼입한 표면피복재의 유해이온 침투저항에 관한 실험적 연구)

  • Ryu, Hwa-Sung;Shin, Sang-Heon;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.2
    • /
    • pp.157-166
    • /
    • 2017
  • In general, carbonation and chlorine ions are the most harmful causes of deterioration of concrete structures. Recently, a method has been developed to control the corrosion of rebar in concrete containing chloride by impregnating a Surface coating material with a inhibitor. In this study, accelerated carbonation and differential thermogravimetric analysis (TG-DTA) and CASS tests were carried out to evaluate the characteristics of Surface coatings containing Organic Corrosion inhibitors which are excellent in corrosion inhibition and fix degradation causes $CO_2$ and $Cl^-$. As a result of the experiment, TG-DTA analysis and accelerated carbonation showed that $CO_2$ was directly reacted with amine derivative in concrete by the incorporation of Organic Corrosion inhibitor. In other words, $CO_2$ was immobilized and carbonation inhibition effect was confirmed. In addition, in the CASS test, the specimen coated with the Surface coating material containing the Organic Corrosion inhibitor with $Cl^-$ fixing property showed no corrosion until the 28th day and had excellent performance in preventing corrosion of a rebar by the chloride ion.

Behavior of Soluble Microbial Products in a Submerged Membrane Separation Activated Sludge Process (침지형 막분리 활성오니법에 있어서 생물대사성분의 거동)

  • Cha, Gi-Cheol;Lee, Dong-Yeol;Shim, Jin-Kie;Lee, Yong-Moo;Yoo, Ik-Keun;Ann, Seung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.5
    • /
    • pp.959-970
    • /
    • 2000
  • A laboratory-scale experiment was conducted to investigate the effect of soluble microbial products(SMP) on permeate flux in the submerged membrane separation activated sludge process. Continuous and batch filtration test were operated to understand mechanism of relationship between membrane fouling and SMP. Synthetic wastewater(phenol) was used as a carbon source. Hydraulic retention time(HRT) and mixed-liquor volatile suspended solids(MLVSS) of the reactor were kept at 12 hours and 9.000mg VSS/L, respectively. Batch filtration tests ($J_{60}/J_o$) using the mixed liquor from reactor showed that the increase of accumulated SMP concentration in the reactor caused to the decreasing permeate flux and the increasing of the adhesion matters which form cake and gel layer. The resistance value of cake layer was measured $2.9{\times}10^{10}{\sim}4.0{\times}10^{10}(1/m)$, this value showed more significant effect on flux drop than that of among other resistance layers. Batch phenol-degradation experiment was conducted to observe SMP type expected $SMP_{nd}$ and $SMP_{e}$ (SMP resulted from endogenous cell decomposition), these are non-biodegradable high molecular weight organic matter and playa significant role in permeate flux drop. Also, SMP concentration was accumulated as increased of HRT against flux drop.

  • PDF

Development on Antibiotic Concrete Mixed with Antibacterial Metals and Metallic Salts (금속 및 금속염계 항균제가 혼입된 항균 콘크리트 개발)

  • Choi, Hong-Shik;Heo, Kwon;Lee, Ho-Beom;Lee, Si-Woo;Kwak, Hong-Shin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.2
    • /
    • pp.136-143
    • /
    • 2013
  • In the sewage structures and wastewater facilities, concrete is exposed to hydrogen sulfide ($H_2S$) which acts as an acid material in a solution, and a strongly acidic sulfate ion ($SO{_4}^{-2}$) is generated by a sulfuric bacteria. Hence, a degradation of concrete with biochemical corrosion would be accelerated. Finally, durability of concrete and concrete structures may be greatly reduced. In this study, in order to remove the hydrogen sulfide which is used by the sulfuric bacteria organic-biologically, the antibiotic metal and metallic salt powders were mixed to concrete, and a suppressing performance of the sulfate ion was assessed. For the sulfuric acid bacteria, a comparative evaluation of antimicrobial performance on neutralized concrete specimens were carried out, also by a rapid chloride penetration test, chloride penetration depths and diffusion coefficients were measured for antibiotic concrete in accordance with the amount of metal and metallic salt-based antibacterial agents. Eventually, by an observation of the biochemical state of the surface of concrete specimens exposed outdoors, the performance and applicability of antibiotic concrete were confirmed.