• 제목/요약/키워드: degradation experiment

검색결과 670건 처리시간 0.029초

Study on stiffness deterioration in steel-concrete composite beams under fatigue loading

  • Wang, Bing;Huang, Qiao;Liu, Xiaoling;Ding, Yong
    • Steel and Composite Structures
    • /
    • 제34권4호
    • /
    • pp.499-509
    • /
    • 2020
  • The purpose of this paper is to investigate the degradation law of stiffness of steel-concrete composite beams after certain fatigue loads. First, six test beams with stud connectors were designed and fabricated for static and fatigue tests. The resultant failure modes under different fatigue loading cycles were compared. And an analysis was performed for the variations in the load-deflection curves, residual deflections and relative slips of the composite beams during fatigue loading. Then, the correlations among the stiffness degradation of each test beam, the residual deflection and relative slip growth during the fatigue test were investigated, in order to clarify the primary reasons for the stiffness degradation of the composite beams. Finally, based on the stiffness degradation function under fatigue loading, a calculation model for the residual stiffness of composite beams in response to fatigue loading cycles was established by parameter fitting. The results show that the stiffness of composite beams undergoes irreversible degradation under fatigue loading. And stiffness degradation is associated with the macrobehavior of material fatigue damage and shear connection degradation. In addition, the stiffness degradation of the composite beams exhibit S-shaped monotonic decreasing trends with fatigue cycles. The general agreement between the calculation model and experiment shows good applicability of the proposed model for specific beam size and fatigue load parameters. Moreover, the research results provide a method for establishing a stiffness degradation model for composite beams after fatigue loading.

In Vivo $^{13}C$-NMR Spectroscopic Study of Polyhydroxyalkanoic Acid Degradation Kinetics in Bacteria

  • Oh, Jung-Sook;Choi, Mun-Hwan;Yoon, Sung-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.1330-1336
    • /
    • 2005
  • Polyhydroxyalkanoic acid (PHA) inclusion bodies were analyzed in situ by $^{13}C$-nuclear magnetic resonance ($^{13}C$-NMR) spectroscopy. The PHA inclusion bodies studied were composed of poly(3-hydroxybutyrate) or poly(3hydroxybutyrate-co-4-hydroxybutyrate), which was accumulated in Hydrogenophaga pseudoflava, and medium-chain-length PHA (MCL-PHA), which was accumulated in Pseudomonas fluorescens BM07 from octanoic acid or 11-phenoxyundecanoic acid (11-POU). The quantification of the $^{13}C$-NMR signals was conducted against a standard compound, sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS). The chemical shift values for the in vivo NMR spectral peaks agreed well with those for the corresponding purified PHA polymers. The intracellular degradation of the PHA inclusions by intracellular PHA depolymerase(s) was monitored by in vivo NMR spectroscopy and analyzed in terms of first-order reaction kinetics. The H. pseudoflava cells were washed for the degradation experiment, transferred to a degradation medium without a carbon source, but containing 1.0 g/l ammonium sulfate, and cultivated at $35^{\circ}C$ for 72 h. The in vivo NMR spectra were obtained at $70^{\circ}C$ for the short-chain-length PHA cells whereas the spectra for the aliphatic and aromatic MCL-PHA cells were obtained at $50^{\circ}C\;and\;80^{\circ}C$, respectively. For the H. pseudoflava cells, the in vivo NMR kinetics analysis of the PHA degradation resulted in a first-order degradation rate constant of 0.075/h ($r^{2}$=0.94) for the initial 24 h of degradation, which was close to the 0.050/h determined when using a gas chromatographic analysis of chloroform extracts of sulfuric acid/methanol reaction mixtures of dried whole cells. Accordingly, it is suggested that in vivo $^{13}C$-NMR spectroscopy is an important tool for studying intracellular PHA degradation in terms of kinetics.

칼륨 페레이트에 의한 Eriochrome Black T 분해 연구 (Degradation of eriochrome black T by potassium ferrate (VI))

  • 황민원;김일규
    • 상하수도학회지
    • /
    • 제36권3호
    • /
    • pp.167-175
    • /
    • 2022
  • 수용액에서 EBT의 분해는 pH, Ferrate (VI) 투입량, 초기 농도, 수용액 온도 등 다양한 변수의 조건에서 연구되었다. 최대 분해 효율은 pH 7.0에서 95.42%가 달성되었으며, 이 실험 조건에서 얻은 kapp 값은 872.87 M-1s-1 이었다. EBT 분해율은 Ferrate (VI)의 투입량이 증가함에 따라 증가하였으며 EBT 초기 농도가 감소함에 따라 EBT 분해의 초기 속도 상수가 증가하였다. 또한 EBT의 분해율은 온도가 10℃에서 45℃에 도달할 때까지 수용액의 온도에 따라 증가하였으며 이 실험조건에서 활성화 에너지 값은 EBT 분해에 대해 11.9 kJ/mol의 값이 도출되었다. 따라서 분해 실험의 결과는 Ferrate (VI)가 수용액상에서 EBT를 효과적으로 분해시킬 수 있음을 보여주고 있다.

확산화염 반응기를 이용한 TiO2 광촉매 제조 및 페놀 및 톨루엔 광분해 응용 (Preparation of TiO2 Photocatalysts by Diffusion Flame Reactor and Its Application on Photo-degradation of Phenol and Toluene)

  • 최상근;김교선
    • 산업기술연구
    • /
    • 제22권B호
    • /
    • pp.117-124
    • /
    • 2002
  • We prepared the nano-sized $TiO_2$ particles by the diffusion flame reactor and investigated the effects of several process variables on the generation and transport properties of $TiO_2$ particle. As the length from the tip of diffusion flame reactor increases, the size of $TiO_2$ particle increases by the coagulation between particles. The structure of $TiO_2$ particles prepared is almost found to be anatase. It was found that the $TiO_2$ particle size depends more largely on the change of reactor temperature than on the change of inlet $TiCl_4$ concentration. By the photo-degradation experiment of phenol and toluene with the prepared $TiO_2$ particles, we found that the photo-degradation efficiencies of phenol and toluene change, depending on the process variables such as size of $TiO_2$ photocatlysts, concentration of phenol or toluene. Degradation efficiencies of phenol and toluene was above 90% in our experiments in 60 minutes.

  • PDF

태양전지 셀의 열화와 직렬저항의 변화에 따른 태양전지 모듈의 특성 해석 (The performance analysis of photovoltaic module accounting for solar cell degradation and series resistance)

  • 박지홍;강기환;화이티루 로렌스;안형근;유권종;한득영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.28-29
    • /
    • 2006
  • When photovoltaic module is used for a long time, its performance decreases due to several reasons. In this paper, we focus on the possibilities mainly contributing to the degraded efficiency of the polycrystalline silicon photovoltaic modules. The analysis is based on the modules that have been used for 15 years. These are two main reasons that cause the efficiency degradation, the corrosion and thermal decomposition. The former phenomenon of electrode is mainly due to the moisture from damaged back sheet in some module. However the other reason of the degraded efficiency comes from the thermal decomposition, which can not be observed from the outside but only by experiment. In this study, the comparison between the efficiency of normal modules and degradation modules is presented. Module having degraded cell was seen to cause increase of series resistance by about 80%, in comparison to normal samples efficiency which reduce by about 20%. This study shows that the effects of series resistances on module performance are critical. These effects must be understood and taken into consideration when analyzing performance degradation.

  • PDF

Endoglucanase와 β-Glucosidase 효소에 의한 셀룰로오스 생분해 모델링 (Cellulose Biodegradation Modeling Using Endoglucanase and β-Glucosidase Enzymes)

  • 조선주;김태욱;조대철
    • 한국환경과학회지
    • /
    • 제31권3호
    • /
    • pp.227-235
    • /
    • 2022
  • In this study, a biodegradation model of based on molecular cellulose was established. It is a mathematical, kinetic model, assuming that two major enzymes randomly break glycosidic bonds of cellulose molecules, and calculates the number of molecules by applying the corresponding probability and degradation reaction coefficients. Model calculations considered enzyme dose, cellulose chain length, and reaction rate constant ratio. Degradation increased almost by two folds with increase of temperature (5℃→25℃). The change of degradation was not significant over the higher temperatures. As temperature increased, the degradation rate of the molecules increased along with higher production of shorter chain molecules. As the reaction rates of the two enzymes were comparative the degree of degradation for any combinations of enzyme application was not affected much. Enzyme dose was also tested through experiment. While enzyme dose ranged from 1 mg/L to 10 mg/L, the gap between real data and model calculations was trivial. However, at higher dose of those enzymes (>15 mg/L), the experimental result showed the lower concentrations of reductive sugar than the corresponding model calculation did. We determined that the optimal enzyme dose for maximum generation of reductive sugar was 10 mg/L.

Experimental damage evaluation of prototype infill wall based on forced vibration test

  • Onat, Onur
    • Advances in concrete construction
    • /
    • 제8권2호
    • /
    • pp.77-90
    • /
    • 2019
  • This paper aims to investigate vibration frequency decrease (vibration period elongation) of reinforced concrete (RC) structure with unreinforced infill wall and reinforced infill wall exposed to progressively increased artificial earthquake load on shaking table. For this purpose, two shaking table experiments were selected as a case study. Shaking table experiments were carried on 1:1 scaled prototype one bay one storey RC structure with infill walls. The purpose of this shaking table experiment sequence is to assess local behavior and progressive collapse mechanism. Frequency decrease and eigen-vector evolution are directly related to in-plane and out-of-plane bearing capacities of infill wall enclosure with reinforced concrete frame. Firstly, frequency decrease-damage relationship was evaluated on the base of experiment results. Then, frequency decrease and stiffness degradation were evaluated with applied Peak Ground Acceleration (PGA) by considering strength deterioration. Lastly, eigenvector evolution-local damage and eigenvector evolution-frequency decrease relationship was investigated. Five modes were considered while evaluating damage and frequency decrease of the tested specimens. The relationship between frequency decrease, stiffness degradation and damage level were presented while comparing with Unreinforced Brick Infill (URB) and Reinforced Infill wall with Bed Joint Reinforcement (BJR) on the base of natural vibration frequency.

기체확산층의 미세다공층 침투 깊이에 따른 고분자 전해질형 연료전지의 내구성능 저하 분석에 관한 연구 (Study on the Durability Characteristics of the PEM Fuel Cells having Gas Diffusion Layer with Different Micro Porous Layer Penetration Thicknesses)

  • 박재만;오환영;조준현;민경덕;이은숙;정지영
    • 한국수소및신에너지학회논문집
    • /
    • 제24권3호
    • /
    • pp.216-222
    • /
    • 2013
  • Durability characteristics of Gas Diffusion Layer(GDL) is one of the important issues for accomplishing commercialization of Proton Exchange Membrane Fuel Cell(PEMFC). It is strongly related to the performances of PEMFC because one of the main functions of GDL is to work as a path of fuel, air and water. When the GDL does not work on their proposed functions due to the degradation of durability, mass transfer in PEMFC is disturbed and it might cause the flooding phenomenon. Thus, investigating the durability of GDL is important and understanding the GDL degradation process is needed. In this study, electrochemical degradation with carbon corrosion is introduced. The carbon corrosion experiment is carried out with GDLs which have different MPL penetration thicknesses. After the experiment, the amount of degradation of GDL is measured with various properties of GDL such as weight, thickness and performance of the PEMFC. The degraded GDL shows loss of their properties.

점진적 성능저하 기능을 가지는 X-대역 SSPA 송신장치 개발 (Development of SSPA-based X-band Transmitter with Graceful Degradation)

  • 송형민;김지덕;강현철;송재경;박철순;이계진;이충현;김동길
    • 한국전자통신학회논문지
    • /
    • 제14권5호
    • /
    • pp.853-862
    • /
    • 2019
  • 본 논문에서는 낮은 MTBF와 높은 정비비용이 소모되는 TWTA(: Travelling Wave Tube Amplifier) 방식의 탐색레이더 송신장치를 대체하기 위해서 4.5kW X-대역 SSPA(: Solid State Power Amplifier) 방식의 송신장치를 설계하였다. 송신장치는 평균송신출력 520W와 최대송신출력 4.0kW 이상의 성능을 목표로 설계되었다. 특히 점진적 성능저하 기능을 구현하여, 200W 전력증폭기조립체의 40%(13개 조립체 모듈)의 고장 수준까지는 기존의 TWTA 송신장치보다는 우수한 성능이 유지되도록 설계하였다. 설계된 송신장치에 대해서 X-대역 유효범위를 대상으로 실험한 결과, 최대송신출력 6.1kW, 불요파 69.16dBc, 상승시간 15.2ns, 하강시간 16.3ns 등의 성능값을 확인하였다. 아울러 고장인가를 통하여 점진적 성능저하 기능에 따른 출력전력의 변화를 실험을 통해 확인하였다.

METHANOGENIC FERMENTATION OF FAT-CONTAINING WASTEWATER MEDIATED BY IRON

  • Zubair, A.;Ivanov, V.;Kim, In-S.
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 춘계학술발표대회
    • /
    • pp.109-112
    • /
    • 2000
  • Long chain fatty acids (LCFA) are potential inhibitors of bacteria involved in anaerobic digestion because of their surface activity. Precipitation of long-chain fatty acids with iron can improve the anaerobic degradation due to their precipitation and reducing surface properties. Degradation of stearic acid was improved in the presence of iron (II). The methane production was increased 1.6 times as compared to control. Iron-containing soil was applied for degradation of vegetable oil as model case. The methane production was increased 1.5 times as compared to control. Yield of methane production was 0.09 and 0.06L/g COD in experiment and control respectively. Optimum COD/Fe ratio was found 20 mg/mg. Iron (II) can be produced in the treatment system from iron (III) hydroxide or iron containing minerals.

  • PDF