• Title/Summary/Keyword: degradable film

Search Result 24, Processing Time 0.023 seconds

Effects of Bio-degradable Mulches on the Yield of Maize and the Density of Soil Microbe

  • Lim, Soo-Jeong;Lee, Min-Bum;Kim, Se-Won;Kim, Jang-Su;Heo, Su-Jeong;Choi, Seung-Chul;Yoon, Byeong-Sung;Kim, In-Jong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.375-380
    • /
    • 2016
  • The use of polyethylene film has a problem such as increasing rural environmental contamination, collection costs and farmers' workload. The objective of this study was to evaluate bio-degradable films in terms of yield of maize and soil environment. Treatments were bio-degradable film A (BDF A), bio-degradable film B (BDF B), high density polyethylene (HDPE), and non-mulched (NM) soil. Daily mean values of soil temperature (10 cm depth) under BDF A, BDF B, and HDPE were higher than in NM soil by 2.2, 2.8, $3.1^{\circ}C$ respectively. In the mulching cultivation of maize, bio-degradable film began to degrade from 50~60days after the planting. The degradation was much progressed in the harvest time and almost decomposed in the following spring. The weight of ear of maize was not shown significantly by mulching treatments. There were little changes of soil chemical properties for the bio-degradable film mulching. After using bio-degradable films, the contents of biomass-C and dehydrogenase activity increased from 92 to $137{\sim}147mg\;kg^{-1}$, and from 87 to $123{\sim}168mg\;kg^{-1}$ respectively.

Studies on the Bio-degradability and Characteristics of Mulching Films Containing Rice By-products Applied to Upland Crops (벼 부산물을 함유한 생분해성 멀칭비닐의 포장 재배조건에서의 특성 및 분해력 연구)

  • Han, Sang-Ik;Kang, Hang-Won;Jang, Ki-Chang;Seo, Woo-Duck;Oh, Seong-Hwan;Ra, Ji-Eun;Lee, Hyeong-Un;Chung, Mi-Nam;Choi, Kyung-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.2
    • /
    • pp.99-105
    • /
    • 2012
  • The main challenges for the development of agricultural bio-degradable mulching film concern the degradation during the lifetime of cultivated crops. A set of rice by-product (rice-hull and rice-bran) based bio-degradable mulching films was developed and tested, following the measurement of standard bio-degradability rate and adaptability in a large scale field experiment. The standard bio-degradability of bio-film passed the KS (Korea standard) regulation. The result of mechanical analysis of bio-degradable mulching film presented a higher mechanical strength and elongation rate compared with polyethylene film. In addition, bio-film could be degraded into fragments within 4 months under the field condition of several upland crops. Bio-degradable mulching film indicated great potential as a new source of agricultural bio-degradable material.

Manufacturing Multi-degradable Food Packaging Films and Their Degradibility (복합분해성 플라스틱 식품포장 필름의 제조 및 분해성)

  • Chung, Myong-Soo;Lee, Wang-Hyun;You, Young-Sun;Kim, Hye-Young;Park, Ki-Moon
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.877-883
    • /
    • 2003
  • Multi-degradable master hatch (M/B) was prepared and 0.05 mm polyethylene (PP) food packaging films containing 0, 10, and 20% M/B were manufactured by inflation film processing. The films were exposed to UV radiation, fungi, and heat in order to observe their photolysis, biodegradability, and thermal degradability, respectively. While pure PP film maintained more than 70% of its original elongation after 8 weeks of UV radiation, an almost perfect loss in the elongation of PP film containing 20% M/B was observed. Significant decreases in elongation of PP films by heat treatment $(68{\pm}2^{\circ}C)$ were also found in samples containing the multi-degradable M/B. By observing changes in film surface after the inoculation of fungi using scanning electron microscopy (SEM), the biodegradability of plastic film could be accelerated with the addition of multi-degradable M/B. The results of the mulching test in yard showed that adding multi-degradable M/B can effectively degrade plastic films in natural environmental conditions without interrupting the growth of plants.

Bio-degradable Characteristics and Mechanical Properties of Mulching Films Containing Rice By-product (벼 부산물을 함유한 생분해성 필름의 기계적 성질 및 분해 특성)

  • Han, Sang-Ik;Kang, Hang-Won;Byun, Dae-Woo;Jang, Ki-Chang;Seo, Woo-Duck;Ra, Ji-Eun;Kim, Jun-Young;Choi, Kyung-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.2
    • /
    • pp.113-118
    • /
    • 2011
  • This study was aimed to develop blend films by rice by-product (rice-hull and rice-bran) and bio-degradable materials. The rice by-product was firstly prepared from the pulverizing for making fine powder. Bio-degradable materials could be prepared by melting at high temperature. The mixture of the fine powder of rice by-product and melted bio-degradable materials was then blended and cast into films. The obtained films were investigated on their morphology, secondary structures and properties by using SEM, ICP and ASTM, respectively. Mechanical properties and degradability of these films were measured and compared to those of the PE films. Mechanical strength of bio-films was higher than that of PE films, however elongation ratio showed lower percent than that of PE film. In addition, bio-film could be degraded into fragments within 3 months under the field condition of normal upland crop cultivation. Bio-degradable mulching film indicated great potential for agronomic use as a new source of bio-degradable material.

Assessment and Applications of Multi-Degradable Polyethylene Films as Packaging Materials

  • Chung, Myong-Soo;Lee, Wang-Hyun;You, Young-Sun;Kim, Hye-Young;Park, Ki-Moon;Lee, Sun-Young
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.5-12
    • /
    • 2006
  • Degradation performance of environmentally friendly plastics that can be disintegrated by combination of sunlight, microbes in soil, and heat produced in landfills was evaluated for use in industries. Two multi-degradable master batches (MCC-101 and MCC-102 were manufactured, separately mixed with polyethylene using film molding machine to produce 0.025 mm thick films, and exposed to sunlight, microbes, and heat. Low- and high-density polyethylene (LDPE and HDPE) films containing MCC-101 and MCC-102 became unfunctional by increasing severe cleavage at the surface and showed high reduction in elongation after 40 days of exposure to ultraviolet light. LDPE and HDPE films showed significant physical degradation after 100 and 120 days, respectively, of incubation at $68{\pm}2^{\circ}C$. SEM images of films cultured in mixed mold spore suspension at $30^{\circ}C$ and 85% humidity for 30 days revealed accelerated biodegradation on film surfaces by the action of microbes. LDPE films containing MCC-l01 showed absorption of carbonyls, photo-sensitive sites, at $1710\;cm${-1}$ when exposed to light for 40 days, whereas those not exposed to ultraviolet light showed no absorption at the same frequency. MCC-101-based LDPE films showed much lower $M_w$ distribution after exposure to UV than its counterpart, due to agents accelerating photo-degradation contained in MCC-101.

Micro Pulverization and Surface Modification of Biomass Byproducts for Developing Bio-Degradable Plastic Film (생분해 플라스틱 필름 제조를 위한 바이오매스 부산물의 분체화 및 표면개질 연구)

  • Chung, Sung Taek;Han, Jung-Gu;Lee, Roun;Kim, Pan-Chae;Kuk, YoungRye;Choi, ChunHoan;Park, Hyung Woo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.1
    • /
    • pp.23-30
    • /
    • 2022
  • This study investigated the characteristics for rice husk pulverization and surface modification of biomass byproducts composed of rice husk, corn extract gourd, wheat bran, and soybean curd. The size of particles of rice husk was at 6.44 ㎛ and represented the most affordable material for preparing the bio-degradable film among the tested byproducts. The silane treatment and adding 2% of ESO (Epoxidized soybean oil) and 3-aminopropyl triethoxysilane solution mixed in a 1:1 ratio were best to the surface modification and SEM-based particle shape. Above the results, adding 2% of mixed solution after silane treatment of rice husks processed through an air classifying mill (ACM) allows for its use as a raw material of bio-degradable plastic film.

Preparation of Tuna Skin Byproduct Film Containing Pinus thunbergii Cone Extract

  • Bak, Jing-Gi;Kim, Jin;Ohk, Seung-Ho
    • Biomedical Science Letters
    • /
    • v.26 no.4
    • /
    • pp.360-367
    • /
    • 2020
  • Tuna skin byproduct extract (TSB) was used as a biocompatibility film base material, and its composite film with gellan gum (GG) was prepared. In addition, Pinus thunbergii cone extract (PTCE) was incorporated into the film to provide anti-oxidant and anti-bacteria activities. The tensile strength (TS) of the TSB/GG composite films increased with increasing GG content, whereas elongation at break (E) decreased. TSB/GG film at a ratio of 0.5:0.5 (w/w) showed the most desirable TS and E values. Based on scavenging free radical potentials and disc diffusion method results against growth of bacteria, antioxidant and anti-bacteria activities of films increased with increasing PTCE concentration. Accordingly, this study showed that TSB/GG could be used as a film material while the TSB/GG composite film containing PTCE can be utilized as functional packaging.

Pure Culture Assay with Streptomyces viridosporus T7A for Biodegradability Determination of Oxidized Potato Starch/Polyethylene Films

  • Kim, Meera;Kim, Sung-Hong
    • Preventive Nutrition and Food Science
    • /
    • v.6 no.2
    • /
    • pp.112-116
    • /
    • 2001
  • Oxidized potato starch/polyethylene (PE) cast films were prepared with different percentages of linear low density PE (LLDPE), oxidized potato starch and prooxidant. For the determination of biodegradability of the films, lignocellulose-degrading Streptomyces viridosporus T7A (ATCC 39115) was used. Films were chemically disinfected and incubated with S. viridosporus by shaking at 100 rpm at 37$^{\circ}C$ for eight weeks. Hydroxyl indices of the films by Fourier-Transform Infrared Spectroscopy, mechanical Properties of the films by Instron and film morphology by scanning electron microscope (SEM) were measured. The hydroxyl index of the film containing the oxidized potato starch incubated with S. viridosporus T7A was higher than that of the corresponding control. All the films containing 5% and 10% oxidized starch showed a decrease of tensile strength on the films after incubation when the corresponding uninoculated film was compared. In the oxidized starch/PE film incubated with S. viridosporus T7A, partial destruction of starch and PE was examined by SEM.

  • PDF

Development and characterization of an eco-friendly packaging film using Gelidium amansii and Sargassum horneri (우뭇가사리와 괭생이모자반을 이용한 친환경 포장 필름 개발 및 특성 연구)

  • Wan young, Cha;Chan, Byon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.76-85
    • /
    • 2022
  • In this study, a biodegradable packaging film was developed using two marine algae, Gelidium amansii, and Sargassum horneri. The chemical properties and microstructure of the developed film were evaluated using field emission scanning electron microscope, Fourier transform infrared spectroscopy, gas chromatography-Mass spectroscopy, and thermogravimetric analysis. Furthermore, the mechanical properties and toxicity of the film were evaluated using the ISO 1924 and IEC 62321 methods, respectively. The biodegradability of the film was evaluated according to ISO 14855-1:2012 method. The film was primarily made of cellulose and had biodegradability that was about 17 times greater than that of PBS, a representative eco-friendly plastic. Moreover, the mechanical properties improved by approximately 40% compared to the seaweed-based film of the previous study. The virulence test revealed that the content of all of the toxic substances listed in IEC62321 was below the measurement limit. An egg carton that can be used in practice was manufactured in accordance with ISO 534, and its applicability was tested using the biodegradable packaging film prepared.

Studies on the Isolation and Identification of PEG-Degradable Strains and Physical Chracteristics of PEG-Films (PEG 분해균주의 분리, 동정 및 PEG Film 상용성에 관한 연구)

  • 이제혁;이준열;전억한
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.3
    • /
    • pp.316-321
    • /
    • 1994
  • Several strains capable of degrading PEGs(Polyethylene Glycols) were isolated and investigated for their biodegradation ability of PEGs. Microorganisms screened for the biodegrada- tion studies were those grown on the PEG used as a sole carbon and energy source. It was known that the number of microorganisms decreased when grown on the high molecular weight of PEG. A biodegradation of PEG was investigated with such microorganisms in the reactor and resulted in the decrease in PEG concentration meaning that PEG was degraded in the reactor. This microorganism was identified as Flavobacterium sp. The biodegradability was found to be about 18.8% for PEG-8000 and 25.4% for PEG-10,000, respectively. For the manufacture of biodeg- radable PEG film, EMAA/PEG and EAA/PEG blending ability was investigated with IR spectrum and showed that it was possible to produce blending film.

  • PDF