• Title/Summary/Keyword: deformed bar

Search Result 125, Processing Time 0.026 seconds

Seismic performances of RC columns reinforced with screw ribbed reinforcements connected by mechanical splice

  • Lee, Se-Jung;Lee, Deuck Hang;Kim, Kang Su;Oh, Jae-Yuel;Park, Min-Kook;Yang, Il-Seung
    • Computers and Concrete
    • /
    • v.12 no.2
    • /
    • pp.131-149
    • /
    • 2013
  • Various types of reinforcement splicing methods have been developed and implemented in reinforced concrete construction projects for achieving the continuity of reinforcements. Due to the complicated reinforcement arrangements and the difficulties in securing bar spacing, the traditional lap splicing method, which has been widely used in reinforced concrete constructions, often shows low constructability and difficulties in quality control. Also, lap spliced regions are likely to be over-reinforced, which may not be desirable in seismic design. On the other hand, mechanical splicing methods can offer simple and clear arrangements of reinforcement. In order to utilize the couplers for the ribbed-deformed bars, however, additional screw processing at the ends of reinforcing bars is typically required, which often lead to performance degradations of reinforced concrete members due to the lack of workmanship in screw processing or in adjusting the length of reinforcing bars. On the contrary, the use of screw-ribbed reinforcements can easily solve these issues on the mechanical splicing methods, because it does not require the screw process on the bar. In this study, the mechanical coupler suitable for the screw-ribbed reinforcements has been developed, in which any gap between the reinforcements and sleeve device can be removed by grouting high-flow inorganic mortar. This study presents the uniaxial tension tests on the screw-ribbed reinforcement with the mechanical sleeve devices and the cyclic loading tests on RC columns with the developed coupler. The test results show that the mechanical sleeve connection developed in this study has an excellent splicing performance, and that it is applicable to reinforced concrete columns with a proper confinement by hoop reinforcement.

Experimental and analytical behaviour of cogged bars within concrete filled circular tubes

  • Pokharel, Tilak;Yao, Huang;Goldsworthy, Helen M.;Gad, Emad F.
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.1067-1085
    • /
    • 2016
  • Recent research on steel moment-resisting connection between steel beams and concrete filled steel tubes has shown that there are considerable advantages to be obtained by anchoring the connection to the concrete infill within the tube using anchors in blind bolts. In the research reported here, extensive experimental tests and numerical analyses have been performed to study the anchorage behaviour of cogged deformed reinforcing bars within concrete filled circular steel tubes. This data in essential knowledge for the design of the steel connections that use anchored blind bolts, both for strength and stiffness. A series of pull-out tests were conducted using steel tubes with different diameter to thickness ratios under monotonic and cyclic loading. Both hoop strains and longitudinal strains in the tubes were measured together with applied load and slip. Various lead-in lengths before the bend and length of tailed extension after the bend were examined. These dimensions were limited by the dimensions of the steel tube and did not meet the requirements for "standard" cogs as specified in concrete standards such as AS 3600 and ACI 318. Nevertheless, all of the tested specimens failed by bar fracture outside the steel tubes. A comprehensive 3D Finite Element model was developed to simulate the pull-out tests. The FE model took into account material nonlinearities, deformations in reinforcing bars and interactions between different surfaces. The FE results were found to be in good agreement with experimental results. This model was then used to conduct parametric studies to investigate the influence of the confinement provided by the steel tube on the infilled concrete.

Effects of Annealing on the Texture Development and Abnormal Grain Growth in a Commercial AZ31B Mg Alloy Sheet (상용 AZ31B Mg합금 판재의 어닐링에 따른 집합조직 변화 및 결정립 이상 성장)

  • Yang, G.S.;Yoon, S.S.;Jang, W.Y.;Kang, J.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.6
    • /
    • pp.293-299
    • /
    • 2008
  • In order to provide with fundamental data of the wrought Mg alloy for press forging, the effect of annealing temperature on the microstructure, texture development and tensile properties is studied in a commercial AZ31B Mg alloy sheet. Basal texture i.e. $(0001){\pm}5^{\circ}$[21$\bar{3}$0] is developed in a commercial AZ31B Mg sheet, and the texture is not changed considerably by annealing over $400^{\circ}C{\times}30min$, while (10$\bar{3}$0) component with high intensity can be observed due to abnormal grain growth. When the sheet is tensile-deformed with RD, $45^{\circ}$ and TD directions at room temperature, fracture strains are given by 25.8, 21.4 and 11.9% in the order of RD, $45^{\circ}$ and TD directions, respectively. With increasing annealing temperature up to $450^{\circ}C{\times}30min$, little change in mean grain size can be revealed by annealing below $300^{\circ}C{\times}30min$ but an abnormal grain growth, where some grains become significantly coarser than the rest, occurs by annealing above $400^{\circ}C{\times}30min$. The maximum tensile strain of around 25% is obtained by annealing below $300^{\circ}C{\times}30min$, but it is abruptly decreased to 16% by annealing above $400^{\circ}C{\times}30min$ owing to intergranular fracture of abnormal grown grains.

A Convergent Study on the Structural Analysis of Stabilizer at Light and Large Sized Cars (경차와 대형차에서의 스테빌라이저들의 구조해석에 관한 융합연구)

  • Choi, Kye-Kwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.2
    • /
    • pp.173-177
    • /
    • 2021
  • In this study, the torsional rigidity and durability of the stabilizer models with the hollow axis of light and large sized cars were compared and investigated each other. Model 1 was applied with the moment more than three times as much as model 2, but the maximum deformation of model 1 was seen to be about 2.6 times larger than that of model 2. Commonly, models 1 and 2 are seen to get the most stress at the neck of stabilizer bar link. Also, the maximum stress of model 1 was about 2.9 times larger than that of model 2. Model 1 at large car showed more than 20 times more deformed energy than model 2 at small car. Overall, it could be examined that the deformation energy of the bracket part on the side where the moment fixing the stabilizer bar was applied was greater than that of the stabilizer. It is thought that the analysis results in this study can be helped at the design of its convergent research as a durable component of the stabilizer at a light or large sized car.

An Analytical Study on the Anchorage Design in Exterior R/C Beam-Column Connections (R/C조 외측 보-기둥 접합부의 정착설계에 대한 해석적 연구)

  • 최기봉
    • Computational Structural Engineering
    • /
    • v.5 no.4
    • /
    • pp.133-142
    • /
    • 1992
  • An analytical model was developed for predicting the pullout behavior of straight beam longitudinal bars anchored at exterior beam-column connections. The model incorporates a local bond constitutive simulation capable of considering the effects of anchored bar diameter, yield strength and the spacing, concrete compressive strength, and column pressure on the bond characteristics of deformed bars in confined conditions of exterior joints. The analytical techniques adopted in this study were shown to satisfactorily predict the results of pullout tests on straight bars embedded in confined concrete specimens. An evaluation of the ACI-ASCE Committee 352 development length requirements in exterior joint conditions was made using the developed analytical approach. The results of this analytical evaluation are indicative of the conservatism of the current development length requirements in the confined conditions of exterior joints.

  • PDF

Fabrication of Al Flake Powder for Pigment (안료용 알루미늄 플레이크 분말 제조)

  • 홍성현;김병기
    • Journal of Powder Materials
    • /
    • v.10 no.6
    • /
    • pp.415-421
    • /
    • 2003
  • The study for producing the flake powders by milling of aluminum foil and gas atomized powders was carried out. The effects of lifter bars on the ball motions and milling of aluminum foils were also investigated. The aluminum foils were laminated each other, elongated, fragmented into small foils and finally formed into the flake powders during the dry ball-milling. The spherical atomized-powders were milled to coarse flake powders with high aspect ratio and then changed to fine flake powders with lower aspect ratio. Even though long times were required for making flake powders by milling of foils, the water covering areas of them were higher than those of powders milled using gas-atomized powders, suggesting aluminum foils were more plastically deformed by micro-forging. On the other hand, as the number of lifter bars increased, the necessary rotation speeds of milling jar for cascading mode and cataracting mode decreased drastically. It was possible to achieve same quality of milled flake powder by using the lifter bars under the lower milling speeds. The painting test showed that the appearance of painted surface was good and optimum content range of aluminum paste in car paint to maximize the degree of gloss was 3-5%.

Characteristics of Pre-Heat Treated Steel for Application to Forging (선조질강 소재의 단조공정 측면에서의 특징)

  • Eom, J.G.;Li, Q.S.;Jang, S.M.;Abn, S.T.;Son, Y.H.;Hyun, S.W.;Kim, H.;Yoon, D.J.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.6
    • /
    • pp.453-457
    • /
    • 2009
  • In this paper, plastic deformation behaviors of ESW105 and SCM435 steels are revealed by simulations and experiments. ESW105 is the special pre-heat-treated steel characterized by high initial yield strength and negligible strain-hardening behavior. The flow stresses of the two steels for large stain are calculated from tensile tests. Axial and lateral compressions of cylindrical bars are tested and simulated and the deformed shapes are compared to characterize the plastic deformation behaviors of the two materials. A forward extrusion process of a cylindrical bar is also simulated to reveal the difference. It has been shown that there are pretty much difference in plastic flow between ESW105 and SCM435 which causes from the difference in strain-hardening capability, implying that the experience-oriented design rules for common commercial materials may lead to failure in process design when the new material of ESW105 is applied without consideration of its plastic deformation behavior.

Characteristics of Pre-Heat Treated Steel for Application to Forging (선조질강 소재의 단조공정 측면에서의 특징)

  • Eom, J.G.;Li, Q.S.;Jang, S.M.;Ahn, S.T.;Son, Y.H.;Hyun, S.W.;Kim, H.;Yoon, D.J.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.48-51
    • /
    • 2009
  • In this paper, plastic deformation behaviors of ESW105 and SCM435 steels are revealed by simulations and experiments. ESW105 is the special pre-heat-treated steel characterized by high initial yield strength and negligible strain-hardening behavior. The flow stresses of the two steels for large stain are calculated from tensile tests. Axial and lateral compressions of cylindrical bars are tested and simulated and the deformed shapes are compared to characterize the plastic deformation behaviors of the two materials. A forward extrusion process of a cylindrical bar is also simulated to reveal the difference. It has been shown that there are pretty much difference in plastic flow between ESW105 and SCM435 which causes from the difference in strain-hardening capability, implying that the experience-oriented design rules for common commercial materials may lead to failure in process design when the new material of ESW105 is applied without consideration of its plastic deformation behavior.

  • PDF

Structural Design Equation for a Box-shape Pressure Compensated Chamber of Pilot Mining Robot (파일럿 집광로봇 박스형 압력보상용기 구조설계식)

  • Lee, Minuk;Hong, Sup;Lim, Woochul;Lee, Tae Hee;Choi, Jong-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.66-73
    • /
    • 2012
  • A pressure compensated chamber of a pilot mining robot isolates and protects an electrical-electronic system from the ambient highly pressured water. Since the inner pressure of the chamber is compensated with outer water pressure using hydraulic oil and pressure compensator, there exists a pressure difference, less than 1 bar, between outer and inner surface. The structural safety of the chamber is obtained relatively easier than the canister type which inner pressure is kept as the atmospheric pressure. However, due to the adoption of box shape for space efficiency and usage of the transparent engineering plastic viewport for checking inner circumstance, the viewport can be largely deformed. This large deformation can cause an additional tensile force, called the prying force, to the bolt-flange connection parts of the viewport. In this paper, we suggest the structural design equation considering the prying action for designing the structure of a box-shape pressure compensated chamber.

An Estimation of Wedge Type Removable Soil Nailing System Using by Laboratory Tests (실내역학 실험을 통한 쐐기형 제거식 쏘일네일링 공법의 적용성 평가)

  • Park, Si-Sam;Han, Yeon-Jin;Heo, Seong-Jun;Yoon, Myung-June;Kim, Hong-Taek;Park, Ju-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1330-1333
    • /
    • 2009
  • The soil nailing method had used in variable construction field because of construction convenience and reinforcement effect. Especially, the removal soil nailing method is useful support system in vertical excavation. In this study, to develop the wedge type removable soil nailing method for improvement of the removal soil nailing method. Because of the reinforcement materials is most important in soil nailing method, to evaluate the mechanical characteristics during laboratory strength test in this study. To conduct bond strength test of deformed bar combined with a wedged screw inside plastic fixed socket for evaluate the strength characteristics of wedge type removable soil nailing method and evaluate the strength characteristics of fixed socket based on laboratory tests.

  • PDF