Abstract
In order to provide with fundamental data of the wrought Mg alloy for press forging, the effect of annealing temperature on the microstructure, texture development and tensile properties is studied in a commercial AZ31B Mg alloy sheet. Basal texture i.e. $(0001){\pm}5^{\circ}$[21$\bar{3}$0] is developed in a commercial AZ31B Mg sheet, and the texture is not changed considerably by annealing over $400^{\circ}C{\times}30min$, while (10$\bar{3}$0) component with high intensity can be observed due to abnormal grain growth. When the sheet is tensile-deformed with RD, $45^{\circ}$ and TD directions at room temperature, fracture strains are given by 25.8, 21.4 and 11.9% in the order of RD, $45^{\circ}$ and TD directions, respectively. With increasing annealing temperature up to $450^{\circ}C{\times}30min$, little change in mean grain size can be revealed by annealing below $300^{\circ}C{\times}30min$ but an abnormal grain growth, where some grains become significantly coarser than the rest, occurs by annealing above $400^{\circ}C{\times}30min$. The maximum tensile strain of around 25% is obtained by annealing below $300^{\circ}C{\times}30min$, but it is abruptly decreased to 16% by annealing above $400^{\circ}C{\times}30min$ owing to intergranular fracture of abnormal grown grains.