• Title/Summary/Keyword: deformation temperature

Search Result 2,107, Processing Time 0.025 seconds

Plastic deformation behavior of BMG/crystalline composites in the supercooled liquid region during compression (BMG/결정질 복합재의 과냉각 액상구역에서 압축 변형 거동)

  • Park, E.S.;Lee, J.H.;Kim, S.H.;Huh, M.Y.;Kim, H.J.;Bae, J.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.118-121
    • /
    • 2007
  • Bulk metallic glass (BMG)/crystalline composites comprising a copper based BMG alloy and crystalline nickel were produced by means of eloctroless plating of nickel on $Cu_{54}Zr_{22}Ti_{18}Ni_6$ BMG powder and subsequent consolidation using spark plasma sintering. The plastic deformation behavior of BMG/crystalline composites was examined by uniaxial compression test at various temperatures in the supercooled liquid region (SLR) of the BMG alloy. The evolution of strain states during uniaxial compression was tackled by microstructure observations. Deformation temperature played an important role in the deformation behavior of BMG/crystalline composites, which was attributed to a strong temperature dependence of the flow stress of the BMG alloy in the SLR. BMG/crystalline composites deformed homogenously in the temperature range where the flow stress of the BMG alloy was close to that of crystalline nickel. In contrast, inhomogeneous deformation was observed in the temperature range where the flow stress of the BMG alloy largely differs from that of crystalline nickel.

  • PDF

A study on the creep characteristic of AZ31 Mg alloy at below 0.5Tm (0.5Tm 이하에서의 AZ31 마그네슘 합금 크리이프 특성에 관한 연구)

  • An, Jung-Oh;Kang, Dae-Min
    • Design & Manufacturing
    • /
    • v.2 no.6
    • /
    • pp.43-48
    • /
    • 2008
  • Magnesium alloys have given high attention to the industry of light-weigh as automobile and electronics with aluminium, titanium and composite alloys due to their high strength, low specific density and good damping characteristics. But the magnesium contained structures under high temperature have the problems related to creep deformation and rupture life, which is a reason of developing the new material against creep deformation to use them safely. The purpose of this study is to predict the creep deformation mechanism and rupture time of AZ31 magnesium alloy. For this, creep tests of AZ31 magnesium alloy were done under constant creep load and temperature with the equipment including automatic temperature controller with acquisition computer. The apparent activation energy Qc, the applied stress exponent n and rupture life have been determined over the temperature range below 0.5Tm and stress range of 109~187MPa, respectively, in order to investigate the creep behavior. AZ31 Magnesium alloy identify the activation energy for creep deformation and the stress dependence to creep rate at below 0.5Tm, and then investigate the mechanism for creep deformation and creep rupture life of AZ31 Magnesium alloy.

  • PDF

Effect of Microstructure on the High Deformation Stability of Incoloy 825 Alloy (Incoloy 825 합금의 고온 변형 안정성에 미치는 미세조직의 영향)

  • Kang, Chang-Yong;Kim, Seong-Hwi;Park, Young-Tae
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.20-26
    • /
    • 2017
  • This study was carried out to investigate the effect of precipitate on the high temperature deformation stability of incoloy 825 alloy. $Cr_{23}C_6$ carbide was precipitated under $950^{\circ}C$, but was not detected over $1,000^{\circ}C$. Most of the precipitation consist of $Cr_{23}C_6$ carbide. Strain-rate sensitivity was the highest in 0.01/s and the lowest in 10/s. Strain-rate sensitivity was decreased sharply below $950^{\circ}C$. In the temperature between $850^{\circ}C{\sim}1,150^{\circ}C$, plastic instable area did not exist. It showed the lowest Ziegler Parameter value of 0.06 Ziegler Parameter was the lowest as 0.06 at $850^{\circ}C$ with 10s-1 of strain. The highest Ziegler Parameter value(0.43) was found in plastic deformation at $1,050^{\circ}C$ with 0.01s-1 of strain. It tends to have an higher resistance to the high temperature deformation under $950^{\circ}C$, due to the precipitation.

Dynamic Precipitation and Substructure Stablility of Cu Alloy during High Temperature Deformation

  • Han, Chang-Suk;Choi, Dong-Nyeok;Jin, Sung-Yooun
    • Korean Journal of Materials Research
    • /
    • v.29 no.6
    • /
    • pp.343-348
    • /
    • 2019
  • Structural and mechanical effects of the dynamical precipitation in two copper-base alloys have been investigated over a wide range of deformation temperatures. Basing upon the information gained during the experiment, also some general conclusion may be formulated. A one concerns the nature of dynamic precipitation(DP). Under this term it is commonly understood decomposition of a supersaturated solid solution during plastic straining. The process may, however, proceed in two different ways. It may be a homogeneous one from the point of view of distribution and morphological aspect of particles or it may lead to substantial difference in shape, size and particles distribution. The effect is controlled by the mode of deformation. Hence it seems to be reasonable to distinguish DP during homogeneous deformation from that which takes place in heterogeneously deformed alloy. In the first case the process can be analyzed solely in terms of particle-dislocation-particle interrelation. Much more complex problem we are facing in heterogeneously deforming alloy. Deformation bands and specific arrangement of dislocations in form of pile-ups at grain boundaries generate additional driving force and additional nucleation sites for precipitation. Along with heterogeneous precipitation, there is a homogeneous precipitation in areas between bands of coarse slip which also deform but at much smaller rate. This form of decomposition is responsible for a specially high hardening rate during high temperature straining and for thermally stable product of the decomposition of alloy.

Effects of Deformation Conditions on Microstructure Formation Behaviors in High Temperature Plane Strain Compressed AZ91 Magnesium Alloys (고온 평면변형된 AZ91 마그네슘 합금의 미세조직 및 집합조직의 형성거동)

  • Minho Hong;Yebin Ji;Jimin Yun;Kwonhoo Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.2
    • /
    • pp.66-72
    • /
    • 2024
  • To investigate the effect of deformation condition on microstructure and texture formation behaviors of AZ91 magnesium alloy with three kinds of initial texure during high-temperature deformation, plane strain compression tests were carried out at high-temperature deformation conditions - temperature of 673 K~723 K, strain rate of 5 × 10-3s-1, up to a strain of -1.0. To clarify the texture formation behavior and crystal orientaion distribution, X-ray diffraction and EBSD measurement were conducted on mid-plane section of the specimens after electroltytic polishing. As a result of this study, it is found that the main component and the accumulation of pole density vary depending on initial texture and deformation caondition, and the formation and development basal texture components ({0001} <$10\bar{1}0$>) were observed regardless of the initial texure in all case of specimens.

The Effect of Deformation Heat Compensation in the Hot Forging Analysis of SAF 2507 Stainless Steel (SAF 2507 스텐레스강의 열간단조해석에서 가공열 보정의 효과)

  • 방원규;정재영;장영원
    • Transactions of Materials Processing
    • /
    • v.10 no.3
    • /
    • pp.206-213
    • /
    • 2001
  • Dynamic deformation of metallic materials mostly accompanies substantial amounts of deformation heat. Since the flow stress of deformation is sensitive to temperature, implication of heat due to plastic work is essential to the evaluation of constitutive relations. In this study, a series of compression tests were conducted for SAF 2507 super duplex stainless steel at various temperatures and strain rates. The accumulation of plastic work was calculated through numerical integration and converted into the elevation of temperature. Subsequent logarithmic interpolation deduced isothermal flow surfaces, which were primary input data of finite element analysis. Simple closed die forging process was analyzed and optimized with commercial FEM code applying both raw and calibrated material database. The effect of accounting deformation heat was more noticeable in high-speed forming process.

  • PDF

Numerical Study on Thermal Deformation of AC4C and AC7A Casting Material (AC4C와 AC7A 주조재의 열변형 수치해석적 연구)

  • Yoon, Hee-Sung;Oh, Yool-Kwon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.541-546
    • /
    • 2011
  • This study was numerically investigated on thermal deformation of AC4C and AC7A aluminum alloy casting material for manufacturing the automobile tire mold. The metal casting device was used in order to manufacture the mold product of automobile tire at the actual industrial field. The temperature distribution and the cooling time of these materials were numerically calculated by finite element analysis. Thermal deformation with stress distribution was also calculated form the temperature distribution results. The thermal deformation was closely related to the temperature difference between the surface and inside of the casting. As shown by numerical analysis result, the thermal deformation of AC7A casting material became higher than AC4C casting material. In addition, the results of displacement and stress distributions appeared to be larger at the center parts of casting than on its sides because of the shrinkage caused by the cooling speed difference.

The Hot Deformation Behaviors of Intermediate Thermo-Mechanical Treated Al-Li Based Alloy (중간가공열처리한 AI-Li계 합금의 고온변형거동)

  • Yoo, C.Y.;Jin, Y.C.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.3
    • /
    • pp.1-6
    • /
    • 1991
  • In this study, intermediate thermo-mechanical treated Al-2.0 wt%Li, and Al-2.0 wt%Li-1.2 wt%Cu-1.0 wt%Mg-0.12 wt%Zr alloys were tested in tension at $10^{\circ}C$ and elevated temperature(100, 200 and $300^{\circ}C$). The results are follows : The tensile strength of Al-Li-Cu-Mg-Zr alloy is the highest but the elongation of Al-Li alloy is the highest(106%) among the all alloys in tension at $300^{\circ}C$. The Portervin-LeChartlier effect is showed in AI-Li-Cu-Mg-Zr alloy at 10 and $100^{\circ}C$, because of tangled dislocation by Mg and Cu. In the true stress-strain curves of all alloy, the peaks of stress at $300^{\circ}C$ are showed at the strain less than 0.1. In the binary alloy, the dynamic restoration process at 200 and $300^{\circ}C$ is nearly similar to dynamic recovery type. The hot deformation stress is decreased with increase of dynamic recovery degree, but the elongation is increased. When the strain the strain rate are constant, the temperature dependence of hot deformation stress is increased with increase of deformation temperature. The elongation and degree of dynamic recovery are decreased with increase of hot deformation activation energy, but the deformation stresses slightly increased.

  • PDF

Deformation Analysis of Miniature Metal Bellows Charged Nitrogen for Temperature Change to Cryogenic Condition (극저온까지 온도변화에 따른 질소 충전 소형 금속 벨로우즈의 변형 해석)

  • Lee, Seung-Ha;Lee, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.10
    • /
    • pp.81-88
    • /
    • 2009
  • Bellows is used to control temperature of a Joule-Thomson micro cryocooler. It is made of Nickelcobalt alloy that retains mechanical properties from cryogenic temperature to temperature of 570K. The geometry of bellows is an axisymmetric shell and Nitrogen with high pressure was charged at temperature of 293K. During cool-down process, the pressure and volume of Nitrogen are changed and must be satisfied with state equation. At cryogenic temperature, Nitrogen can exist as a part liquid and part vapor. Pressure-density-temperature behavior under this vaporliquid phase equilibrium is closely given by the Modified-Benedict-Webb-Rubin(MBWR) state equation. To evaluate deformation of bellows for temperature change, the numerical calculation of the volume within bellows and finite element analysis of bellows under internal pressure were iteratively performed until MBWR state equation is satisfied. The numerical results show that deformation of the bellows can be analyzed by the present method in a wide range of temperature including cryogenic temperature.

Mechanisms of Tensile and Creep Deformation at Elevated Temperatures in a Ni-Base Superalloy Alloy 263 (니켈기 초내열합금 Alloy 263의 고온인장 및 크리프 변형기구)

  • Kim, In Soo;Choi, Baig Gyu;Hong, Hyun Uk;Jo, Chang Yong
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.7
    • /
    • pp.535-540
    • /
    • 2011
  • The tensile and creep behaviors of Alloy 263, which is a wrought Ni-base superalloy used for gas turbine combustion systems, was studied. Anomalous increase of yield strength and abrupt decrease of elongation with increasing temperature were observed after tensile testing at an intermediate temperature. Elongation of the superalloy decreased as the temperature increased to and above 540$^{\circ}C$, and it reached a minimum value at 760$^{\circ}C$. It was found that creep strain was also very low at the same temperature. Inhomogeneous deformation with intensive slip bands was observed in the specimens tested at low temperature. A thermally-assisted dislocation climb process was regularly conducted at high temperature. Twinning was found to be an important mechanism of both tensile and creep deformations of the superalloy at an intermediate temperature where ductility minimum was observed.