• 제목/요약/키워드: deformation temperature

검색결과 2,113건 처리시간 0.026초

자동차 휠용 6061 Al합금의 고온변형거동에 따른 단조성형조건 설계 (Forging Process Design by High Temperature Deformation Behavior of the 6061 Aluminum Alloy)

  • 이동근;이지혜;김정한;박노광;이용태;정헌수
    • 대한금속재료학회지
    • /
    • 제46권7호
    • /
    • pp.449-457
    • /
    • 2008
  • Compression deformation behaviors at high temperature as a function of temperature and strain rate were investigated in the 6061 aluminum alloy, which is used for automobile wheel. Compression tests were carried out in the range of temperatures $300{\sim}475^{\circ}C$ and strain rate $10^{-3}{\sim}10^{-1}sec^{-1}$. By analyzing these results, strain rate sensitivity, deformation temperature sensitivity, the efficiency of power dissipation, Ziegler's instability criterion, etc were calculated, which were plastic deformation instability parameters as suggested by Ziegler, Malas, etc. Furthermore, deformation processing map was drawn by introducing dynamic materials model (DMM) and Ziegler's Continuum Criteria. This processing map was evaluated by relating the deformation instability conditions and the real microstructures. As a result, the optimum forging condition for the automobile wheel with the 6061 aluminum alloy was designed at temperature $450^{\circ}C$, strain rate $1.0{\times}10^{-1}sec^{-1}$. It was also confirmed by DEFORM finite element analysis tool with simulation process.

고 Mn 오스테나이트계 스테인리스강의 기계적 성질에 미치는 가공온도의 영향 (Effect of Deformation Temperature on Mechanical Properties of High Manganese Austenitic Stainless Steel)

  • 강창룡;허태영;김영화;구차진;한현성;이상희
    • 한국해양공학회지
    • /
    • 제26권3호
    • /
    • pp.55-60
    • /
    • 2012
  • This study was carried out to investigate the effect of the deformation temperature in high manganese austenitic stainless steel. ${\alpha}$'-martensite was formed with a specific direction by deformation. The volume fraction of the deformation induced martensite was increased by increasing the degree of deformation and decreasing the deformation temperature. With the increase in the deformation, the hardness and tensile strength were increased, while the elongation was rapidly decreased at the initial stage of the deformation, and then gradually decreased. The hardness and tensile strength were increased and the elongation was decreased with adecrease in the deformation temperature. The hardness and tensile strength were strongly controlled by the volume fraction of martensite, but the elongation was controlled by the transformation behavior of the deformation induced martensite.

자동차용 플라스틱 연료튜브의 환경온도에 따른 후변형에 관한 연구 (A Study on the Post Deformation According to an Environmental Temperature of the Plastic Fuel Tube for Automobile)

  • 박정식;문찬용;정영득
    • 동력기계공학회지
    • /
    • 제7권2호
    • /
    • pp.56-60
    • /
    • 2003
  • Recently the plastic fuel tube is usually used to reduce production cost and weight in automobiles. These days, material used to plastic fuel tube is the polyamide12. The fuel tube is made of the PA12. Post deformation of the tube has been changed by environmental temperature. So, it is important to prevent post deformation. The experiment is performed to investigate post deformation of the tube produced by each bending process. In this study, the results we obtained are used to bending process system for post deformation as the environmental temperature of the tube. It turned out that the method of steam heating and air cooling was shown less deformation than other methods.

  • PDF

고질소강 오스테나이트계 스테인레스강의 압축변형특성 (Deformation Characteristic by Compression in High-Nitrogen Austenitic Stainless Steel)

  • 이종욱;김동수;김병구;이명열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.139-141
    • /
    • 2007
  • Compression tests were carried out to investigate morphologies of compressed specimen, deformation microstructure and stress-strain relation in high-nitrogen austenite stainless steel. Tests were performed under a wide range of temperature and, with true strain rates up to $\dot{\varepsilon}$ =0.05, 0.1, 0.5 and $1.0s^{-1}$. The activation energy of loading force was equal to plastic deformation energy within the temperature range of $900^{\circ}C$ to $1250^{\circ}C$. Dynamically recrystallized grain size decreased with an increasing strain rate and temperature. Flow stresses and deformation microstructures, were used to quantify the critical strain rate and recrystallized grain size. The grain size versus strain rate-temperature map obtained in the study was in good agreement with the deformation microstructures of compressed specimens.

  • PDF

Effect of Aluminium Content on High Temperature Deformation Behavior of TiAl Intermetallic Compound

  • Han, Chang-Suk
    • 한국재료학회지
    • /
    • 제25권8호
    • /
    • pp.398-402
    • /
    • 2015
  • Fundamental studies of microstructural changes and high temperature deformation of titanium aluminide (TiAl) were conducted from the view point of the effect of Al content in order to develop the manufacturing process of TiAl. Microstructures in an as cast state consisted mainly of lamellar structure irrespective of Al content. By homogenization at 1473 K, the microstructures of Ti-49Al and Ti-51Al were transformed into an equiaxial structure which was composed of ${\gamma}$-TiAl, while the lamellar structure that was observed in Ti-46Al and Ti-47Al was much more stable. We found that the reduction of Al content suppressed the formation of equiaxial grains and resulted in a microstructure of only a lamellar structure. On Ti-49Al and Ti-51Al, dynamic recrystallization occurred during high temperature deformation, and the microstructure was transformed into a fine equiaxial one, while the microstructures of Ti-46Al and Ti-47Al contained few recrystallized grains and consisted mainly of a deformed lamellar structure. We observed that on the low-Al alloys the lamellar structure under hard mode deformation conditions deformed as kink observed B2-NiAl. High temperature deformation characteristics of TiAl were strongly affected by Al content. An increase of Al content resulted in a decrease of peak stress and activation energy for plastic deformation and an increase of the recrystallization ratio in TiAl.

변형가공도를 이용한 AI 5083 합금의 고온변형거동 (High Temperature Deformation Behavior of Al 5083 Alloy Using Deformation Processing Maps)

  • 고병철;김종현;유연철
    • 소성∙가공
    • /
    • 제7권5호
    • /
    • pp.450-458
    • /
    • 1998
  • The high temperature deformation behavior of Al 5083 alloy has been studied in the temperature range of 350 to 520 ${\circ}C$ and strain rate range of 0.2 to 3.0/sec by torsion test. The strain rate sensitivity(m) of the material was evaluated and used for estabilishing power dissipation maps following the dynamic material model. These maps show the variation of efficiency of power dissipation(${\eta}$=2m/(2m+1)) with temperature and strain rate. Hot restoration of dynamic recrystallization (DRX) was analyzed from the flow curve, deformed microstructure, and processing maps during hot deformation. Also, the effect of deformation strain on the efficiency of power dissipation of the alloy was analysed using the processing maps. Moreover relationship between the hot-ductility and efficiency of power dissipation of the alloy depending on thmperature and strain rate was studied using the Zener-Hollomon parameter(Z=${\varepsilon}$exp(Q/RT) It is found that the maximum efficiency of power dissipation for DRX in Al 5083 alloy is about 74.6 pct at the strain of 0.2. The strain rate and temperature at which the efficiency peak occurred in the DRX domain is found to be ∼0.1/sec and ∼450${\circ}C$ respectively.

  • PDF

Characterisation of Tensile Deformation through Infrared Imaging Technique

  • B. Venkataraman, Baldev Raj;Mukhophadyay, C.K.
    • 비파괴검사학회지
    • /
    • 제22권6호
    • /
    • pp.609-620
    • /
    • 2002
  • It is well known that during tensile testing, a part of the mechanical work done on the specimen is transformed into heat energy. However, the ultimate temperature rise and the rate of temperature rise is related to the nature of the material, conditions of the test and also to the deformation behaviour of the material during loading. The recent advances in infrared sensors and image/data processing techniques enable observation and quantitative analysis of the heat energy dissipated during such tensile tests. In this study, infrared imaging technique has been used to characterise the tensile deformation in AISI type 316 nuclear grade stainless steel. Apart from identifying the different stages during tensile deformation, the technique provided an accurate full-field temperature image by which the point and time of strain localization could be identified. The technique makes it possible to visualise the region of deformation and failure and also predict the exact region of fracture in advance. The effect of thermal gradients on plastic flow in the case of interrupted straining revealed that the interruption of strain and restraining at a lower strain rate not only delays the growth of the temperature gradient, but the temperature rise per unit strain decreases. The technique is a potential NDE tool that can be used for on-line detection of thermal gradients developed during extrusion and metal forming process which can be used for ensuring uniform distribution of plastic strain.

강판-대기 온도차에 의한 선체블록 주판의 부가 면외변형 추정 (A Prediction of Out-of-Plane Deformation on a Deck Plate by Temperature Difference between Steel and Air)

  • 하윤석;이명수
    • 대한조선학회논문집
    • /
    • 제49권3호
    • /
    • pp.222-226
    • /
    • 2012
  • When ship blocks are erected or pre-erected, most blocks will be at outdoors where they are not protected from weather and exposed to ray of the sun. A deck plate compared to those in radiation heat transfer from the sun will have higher temperature than it of ambient air, and will expand more than lower laying structures whose temperatures are similar with air. But deck plates and under-structures are connected, so the deck plate will be under out-of-plane deformation rather than expand in length. In this study, we considered the temperature difference between air and plate as a major parameter of out-of-plane deformation, and analyzed how much additional deformation would take place. In addition, when a deformation could take place was also analyzed based on the initial deformed shape of deck plate. Because the accuracy inspections of deck plate will be done during daytime, conventional accuracy check results on sunny day could make us feel unfair. Thus resonable datum about momentary additional out-of-plane deformation due to environmental effects have been determined. The real deformation values can be specified even under enlarged deformations by radiation-expansion.

열박음 공정이 케이스의 온도분포 및 변형에 미치는 영향(I) - 온도 계측 및 열전달 해석 모델 정립 - (A Study on the Temperature Distribution and Deformation of Case in Shrinkage Fit Process(I) - Temperature Monitoring and Heat Transfer Analysis Model -)

  • 장경복;조상명;강성수
    • Journal of Welding and Joining
    • /
    • 제19권4호
    • /
    • pp.384-390
    • /
    • 2001
  • There have been many problems due to deformation in industry field. Especially, it is severe in parts with small size and thin thickness and in products that must have excellent airtightness and anti-noise. The countermeasures for this deformation in field have mainly been dependent on the rule of trial and error by operator's experience because of productivities. Systematic study about this product with deformation is also insufficient that deformation is complex problem with shape, size, material of product, joining method and conditions, etc.. It is efficient to apply CAE technique without influence on productivity to this problem. There is, however much difference between the result analyzed by CAE and appearances in working field because of the insufficiency of communication between simulator and worker and of sensing data for boundary condition in analysis. In this study, to solve this deformation problem, we intend to make a simulation model that is adapted from working conditions by tuning and feedback between sensing data and simulation results. This paper include temperature monitoring and make a heat transfer model using sensing data in product as previous step for deformation analysis. The heat transfer analysis of shrinkage fit process is considerably difficult due to contact heat transfer between case and core. To solve this contact problem, gap element is used in present study.

  • PDF

순수 2 차원 절삭에서 적외선 열화상을 이용한 주변형 영역의 온도 분포 측정 (Measurement of Temperature Field in the Primary Deformation Zone in 2-D Orthogonal Machining Using IR (Infra-Red) Thermography)

  • 김명재;정현기;황지홍
    • 한국정밀공학회지
    • /
    • 제29권8호
    • /
    • pp.853-862
    • /
    • 2012
  • The present study develops a method for directly measuring the temperature field in the primary deformation zone with a high spatial resolution during 2-D orthogonal machining. This is enabled by the use of a high-speed, charge-coupled device (CCD) based, infra-red (IR) imaging system which allows characteristics of the temperature field such as the location and magnitude of the highest temperature and temperature gradient in the primary deformation zone to be identified. Based on these data, the relation between the machining temperature and the cutting conditions is investigated.