• 제목/요약/키워드: deformation of mold

검색결과 251건 처리시간 0.027초

휨 변경 최소화 근접 냉각 금형을 통한 고성능 고효율 플라스틱 축류팬 개발 (Development of high performance and efficiency plastic axial fan by proximity cooling mold to minimize warpage)

  • 신광호;김미애;채보혜;박상옥;김용대
    • Design & Manufacturing
    • /
    • 제13권1호
    • /
    • pp.61-67
    • /
    • 2019
  • The cooling unit of the industrial showcase consists of a compressor, a condenser and an evaporator. An axial fan is used to circulate the air to improve the efficiency of the heat exchanger. In the past, aluminum fans have been used, which have problems such as low performance, efficiency, high failure rate, and high noise. This study is to develop high performance, high efficiency plastic fan replacing aluminum fan. A major factor in determining the performance and noise of an axial fan is the angle and cross-sectional shape of the blade, which is suitable for raising the lift force, thereby controlling the vortex, which is the main cause of noise and performance degradation. In order to produce a high efficiency injection molded fan, it is necessary to develop a mold that minimizes the deformation of the injection process for the designed shape. In this study, we developed a high efficiency, low noise plastic injection fan with more than 11% performance improvement and noise reduction compared to conventional aluminum fan.

압접 커넥터 CAE 적용 휨 변형 원인 분석에 관한 연구 (A Study on the Bend Deformation Cause Analysis of CAE Applied Wire to Board Connectors)

  • 전용준;신광호;허영무
    • Design & Manufacturing
    • /
    • 제10권1호
    • /
    • pp.19-25
    • /
    • 2016
  • Connectors are very important components that transmit electric signals to different parts. It must maintain intensity of the connector to prevent defects from impact and maintain contact to transmit electric signals. Most of the external parts of the connector, which act as the main framework, are formed by injection molding. However, bend deformation occurs for injection molded products due to the residual stress left inside the product after product molding. When the bend deformation is large, it does not come into complete contact when being assembled with other parts, which leads to connector contact intensity not being properly maintained. In result, the main role of the connector, which is to transmit electric signals, cannot be performed. In order to address this problem, this study conducted bend deformation cause analysis through bend deformation analysis to predict and prevent bend deformation of housings and wafers, which are injection molded products of pressure welded connectors that are normally applied in compact mobile and display products. Bend deformation analysis was carried out by checking the charging time, pressure distribution and temperature distribution through wire to board connector wafer and housing injection molding analysis. Based on the results of the bend deformation analysis results, the cause of the bend deformation was analyzed through deformation resulting from disproportional cooling, deformation resulting from disproportional contraction, and deformation resulting from ingredient orientation. In result, it was judged that the effects for bend deformation were biggest due to disproportional contraction for both the pressure welded connector wafer and housing.

극미세 Mold 및 패턴 제작물 위한 나노변형의 기초연구 (Fundamental Study on Deformation Behavior of the Nano Structure for Application to the Hyper-fine Pattern and Mold Fabrication)

  • 이정우;윤성원;강충길
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.333-336
    • /
    • 2002
  • In this study, to achieve the optimal conditions for mechanical hyper-fine pattern fabrication process, deformation behavior of the materials during indentation was studied with numberical method by ABAQUS S/W. Polymer (PMMA) and brittle materials (Si, Pyrex glass) were used as specimens, and forming conditions to reduce the elastic restoration and bur was proposed. The indenter was modeled a rigid surface. Minimum mesh sizes of specimens are 1-l0nm. The result of the investigation will be applied to the fabrication of the hyper-fine pattern and mold.

  • PDF

금속 몰드를 이용한 금속 분말의 온간 등가압 성형 (Densification Behavior of Metal Powder Under Warm Isostatic Pressing with a Metal Mold)

  • 박중구;김기태
    • 대한기계학회논문집A
    • /
    • 제28권6호
    • /
    • pp.838-847
    • /
    • 2004
  • The effect of a metal mold on densification behavior of stainless steel 316L powder was investigated under warm isostatic pressing with a metal mold. We use lead as a metal mold and obtain experimental data of metal mold properties. To simulate densification behavior of metal powder, elastoplastic constitutive equation proposed by Shima and Oyane was implemented into a finite element program (ABAQUS) under warm die pressing and warm isostatic pressing with a metal mold. Finite element results were compared with experimental data for densification and deformation of metal powder under warm isostatic pressing and warm die pressing.

금속 몰드를 이용한 금속 분말의 온간 등가압 성형 (Densification behavior of metal powder under warm isostaic pessing with metal mold)

  • 박중구;김기태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1352-1357
    • /
    • 2003
  • The effect of the metal mold on densification behavior of stainless steel 316L powder was investigated under warm isostatic pressing with metal mold. We use lead as metal mold and obtain experimental data of metal mold property. To simulate densification of metal powder, the elastoplastic constitutive equation proposed by Shima and Oyane was implemented into a finite element program (ABAQUS) under warm die pressing and warm isostatic pressing with metal mold. Finite element results were compared with experimental data for densification and deformation of metal powder under warm isostatic pressing and warm die pressing.

  • PDF

SMC 압축성형공정에서의 열변형에 관한 유한요소해석 (Finite Element Analysis of Thermally-Induced Deformation in SMC Compression Molding)

  • 이재형;이응식;윤성기
    • 대한기계학회논문집A
    • /
    • 제21권1호
    • /
    • pp.154-163
    • /
    • 1997
  • Thermally-induced deformation in SMC(Sheet Molding Compound) products is analyzed using three dimensional finite element method. Planar fiber orientation, which causes the anisotropic material properties, is calculated through the flow analysis during the compression stage of the mold. Also curing process is analyzed to predict temperature profile which has significant effects on warpage of SMC products. Through the developed procedure, effects of various process conditions such as charge location, mold temperature, fiber contents, and fiber orientations on deformation of final products are studied. and processing strategies are proposed to reduce the warpage and the shrinkage.

사각 프리폼 블로우 성형 특성에 관한 수치적 연구 (Numerical study on the blowing deformation characteristics of a square shaped preform)

  • 조승현;송민재;이동원;고영배
    • Design & Manufacturing
    • /
    • 제9권3호
    • /
    • pp.1-8
    • /
    • 2015
  • This study presents the preform injection molding and the blow molding of the injection stretch-blow molding process for PET bottles. The numerical analysis of the injection molding and the blow molding of a preform is considered in this paper using CAE with a view to minimize the warpage and the thickness. In order to determine the design parameters and processing conditions in injection/blow molding, it is very important to establish the numerical model with physical phenomenon. In this study, we appropriately predicted the warpage, deformation and thickness distribution along the product walls.

  • PDF

0.5Tm 이하에서의 AZ31 마그네슘 합금 크리이프 특성에 관한 연구 (A study on the creep characteristic of AZ31 Mg alloy at below 0.5Tm)

  • 안정오;강대민
    • Design & Manufacturing
    • /
    • 제2권6호
    • /
    • pp.43-48
    • /
    • 2008
  • Magnesium alloys have given high attention to the industry of light-weigh as automobile and electronics with aluminium, titanium and composite alloys due to their high strength, low specific density and good damping characteristics. But the magnesium contained structures under high temperature have the problems related to creep deformation and rupture life, which is a reason of developing the new material against creep deformation to use them safely. The purpose of this study is to predict the creep deformation mechanism and rupture time of AZ31 magnesium alloy. For this, creep tests of AZ31 magnesium alloy were done under constant creep load and temperature with the equipment including automatic temperature controller with acquisition computer. The apparent activation energy Qc, the applied stress exponent n and rupture life have been determined over the temperature range below 0.5Tm and stress range of 109~187MPa, respectively, in order to investigate the creep behavior. AZ31 Magnesium alloy identify the activation energy for creep deformation and the stress dependence to creep rate at below 0.5Tm, and then investigate the mechanism for creep deformation and creep rupture life of AZ31 Magnesium alloy.

  • PDF

Intake Manifold 제품 변형 제어 연구 (The Warpage Reduction for Intake Manifold Product)

  • 이성희;신광호;윤길상;정우철;정태성;허영무
    • 소성∙가공
    • /
    • 제14권3호
    • /
    • pp.269-276
    • /
    • 2005
  • The purpose of this research is the warpage reduction for intake-manifold which is made to the injection molding. Intake-manifold is assembling to ultra sonic welding after forming. Therefore deformation is influence on the performance and manufacture to intake-manifold product. Location and number of gates, filling time, mold temperature, packing time, packing pressure and cooling time are factors that affect the deformation of injection molding product. Therefore, the injection molding characteristics of intake-manifold and the estimated deformation are detected by CAE analysis and compare measuring data in this study.

판형 부품의 밀링 가공에 의한 변형 최소화에 대한 연구 (A study on the minimization of deformation by milling of plate-shaped parts)

  • 이민구;윤재웅
    • Design & Manufacturing
    • /
    • 제15권3호
    • /
    • pp.32-38
    • /
    • 2021
  • Plate-shaped works are one of the materials that can be applied to the entire industry due to their various shapes and sizes. Plate-shaped parts workpieces are thin and wide, and when processing is completed, they are often bent or deformed in various directions, making it difficult to produce normal products. In particular, this study intends to study the processing deformation and distortion of plate-shaped parts fastened to the jig during milling processing. In this study, a method for preventing deformation occurring in plate-shaped parts was derived through jig element change and CAE analysis, and this was applied to actual processing to produce products with stable dimensions. Through a finite element analysis experiment, it was found that installing two supports on the back of the plate-shaped part results in minimal deformation and the optimal distance between the two supports is 150 mm. Through this experiment, when processing a thin plate product, a support was installed in a direction opposite to the cutting force applied to the thin plate to prevent deformation of the product, thereby improving defects.