• Title/Summary/Keyword: deformation modelling

Search Result 190, Processing Time 0.025 seconds

Characteristics of Bearing Capacity for SCP Composite Ground reinforced by the Sheet piles Restraining Deformation (변위억제형 Sheet pile 설치에 따른 SCP복합지반의 지지력 특성)

  • Park, Byung-Soo
    • Journal of Navigation and Port Research
    • /
    • v.30 no.8 s.114
    • /
    • pp.711-719
    • /
    • 2006
  • A series of geotechnical centrifuge model tests and numerical modelling have been performed to study engineering characteristics of the composite ground reinforced by both the Sand Compaction Piles(SCPs) and the deformation-reducing sheet piles. The research has covered several key issues such as the load-settlement relation, the stress concentration ratio and the final water content of the ground Totally three centrifuge tests have been conducted by changing configuration of the sheet piles, i.e., a test without the sheet pile, a test with the sheet pile at a single side and a test with the sheet piles at the both sides. In the model tests, a vertical load was applied in-flight on the ground surface. On the other hand, class-C type numerical modelling has been performed by using the SAGE-CRISP to compare the centrifuge test results using an elasto-plastic model for SCPs and the Modified Cam Clay model for the soft clay. It has been found that the sheet piles can restraint failure of foundation, thereby increasing yield stress of the ground. The stress concentration ratio was in the range of $2{\sim}4$. In addition, numerical analysis results showed reductions both in the ground heave($20{\sim}30%$) and in the horizontal movement($28{\sim}43%$), demonstrating the deformation-reducing effect of the sheet piles.

Computational Modelling to Predict the Welding Deformation in Steel Structures (용접변형예측을 위한 용접부 수치 모델링)

  • Park, Jeong-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.1
    • /
    • pp.96-102
    • /
    • 2007
  • Welding deformation causes critical problems under construction and in use of steel structures by varying the magnitude of the steel structures and deteriorating mechanic strength. Existing method to construct steel structures in civil engineering needs preassembly process for a part of or the whole structures on a broad space to examine the size of structures inevitably varied in the process of welding (assembly process). It leads to waste of time, space and human efforts, worry of safety accidents with the characteristic of the work to be performed on a high place, and non-efficiency and non-economy by using such supplementary equipments as crane. This paper, to remove the needless preassembly process by pre-estimating welding deformation produced under construction of large steel structures, devises a method modeling welded part for applying the equivalence load method and examines the effects of welding sequence and self weight on welding deformation by the method.

  • PDF

Review on Discontinuum-based Coupled Hydro-Mechanical Analyses for Modelling a Deep Geological Repository for High-Level Radioactive Waste (고준위방사성폐기물 심층처분장 모델링을 위한 불연속체 기반 수리-역학 복합거동 해석기법 현황 분석)

  • Kwon, Saeha;Kim, Kwang-Il;Lee, Changsoo;Kim, Jin-Seop;Min, Ki-Bok
    • Tunnel and Underground Space
    • /
    • v.31 no.5
    • /
    • pp.309-332
    • /
    • 2021
  • Natural barrier systems surrounding the geological repository for the high-level radioactive waste should guarantee the hydraulic performance for preventing or delaying the leakage of radionuclide. In the case of the behavior of a crystalline rock, the hydraulic performance tends to be decided by the existence of discontinuities, so the coupled hydro-mechanical(HM) processes on the discontinuities should be characterized. The discontinuum modelling can describe the complicated behavior of discontinuities including creation, propagation, deformation and slip, so it is appropriate to model the behavior of a crystalline rock. This paper investigated the coupled HM processes in discontinuum modelling such as UDEC, 3DEC, PFC, DDA, FRACOD and TOUGH-UDEC. Block-based discontinuum methods tend to describe the HM processes based on the fluid flow through the discontinuities, and some methods are combined with another numerical tool specialized in hydraulic analysis. Particle-based discontinuum modelling describes the overall HM processes based on the fluid flow among the particles. The discontinuum methods that are currently available have limitations: exclusive simulations for two-dimension, low hydraulic simulation efficiency, fracture-dominated fluid flow and simplified hydraulic analysis, so it could be improper to the modelling the geological repository. Based on the concepts of various discontinuum modelling compiled in this paper, the advanced numerical tools for describing the accurate coupled HM processes of the deep geological repository should be developed.

Modelling of bonded and unbonded post-tensioned concrete flat slabs under flexural and thermal loading

  • Mohammed, Abbas H.;Taysi, Nildem
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.595-606
    • /
    • 2017
  • During their life span, post-tensioned concrete structures may be exposed to thermal loads. Therefore, there has been a growing interest in research on the advanced analysis and design of post-tensioned concrete slabs subjected to thermal loads. This paper investigates the structural behaviour of post-tensioned one-way spanning concrete slabs. A nonlinear finite element model for the analysis of post- tensioned unbonded and bonded concrete slabs at elevated temperatures was developed. The interface between the tendon and surrounding concrete was also modelled, allowing the tendon to retain its profile shape during the deformation of the slab. The load-deflection behaviour, load-force behaviour in the tendon, and the failure modes are presented. The numerical analysis was conducted by the finite element ANSYS software and was carried out on two different one-way concrete slabs chosen from literature. A parametric study was conducted to investigate the effect of several selected parameters on the overall behavior of post-tensioned one-way concrete slab. These parameters include the effect of tendon bonding, the effect of thermal loading and the effect of tendon profile. Comparison between uniform thermal loading and nonuniform thermal loading showed that restrained post tensioned slab with bottom surface hotter has smaller failure load capacity.

3 Dimensional Modelling of a Old Architecture Using a Terrrestrial Laser Scanner (지상 레이저스캐너를 이용한 고건축물의 3차원 모델링)

  • Lee, Jin-duk;Do, Chul-ho;Han, Seung-hee
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.30-34
    • /
    • 2007
  • Surveyors has desired eagerly surveying technology and equipments which are able to acquire a lot of data easily, quickly and precisely. Laser has the merits that is able to obtain a large number of measurements with high precision in a short time and one of concrete realizations is a terrestrial laser scanner called Terrestrial LiDAR. This paper describes 3D modelling of a old architecture which was conducted using a Z-F laser system and the result of positioning analysis. Use of terrestrial laser scanner is much more efficient than existing photogrammetry in measuring and database constructing for preservation and restoration of cultural assets as well as for deformation monitoring and safety diagnosis of structures.

  • PDF

Nonlinear simulation of tunnel linings with a simplified numerical modelling

  • Zhao, Huiling;Liu, Xian;Bao, Yihai;Yuan, Yong
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.593-603
    • /
    • 2017
  • A high-efficiency simplified modelling approach is proposed for investigating the nonlinear responses of reinforced concrete linings of shield tunnels. Material and geometric nonlinearities are considered in the analysis of the lining structures undergoing large deformation before ultimately losing the load-carrying capacity. A beam-spring element model is developed to capture the force-transfer mechanism between lining segments and radial joints. The developed model is validated by comparing analyzed results to experimental results of a single-ring lining structure under two loading conditions: the ground overloading and the lateral unloading respectively. The results show that the lining structure under the lateral unloading due to excavation on the both sides of the tunnel is more vulnerable compared to the case of ground overloading on the top of the tunnel. A parameter study is conducted and results indicate that the lateral pressure coefficient has the greatest influence on the behaviour of the lining structure.

Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure

  • Ramteke, Prashik Malhari;Panda, Subrata K.;Sharma, Nitin
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.865-875
    • /
    • 2019
  • The current article proposed to develop a geometrical model for the analysis and modelling of the uniaxial functionally graded structure using the higher-order displacement kinematics with and without the presence of porosity including the distribution. Additionally, the formulation is capable of modelling three different kinds of grading patterns i.e., Power-law, sigmoid and exponential distribution of the individual constituents through the thickness direction. Also, the model includes the distribution of porosity (even and uneven kind) through the panel thickness. The structural governing equation of the porous graded structure is obtained (Hamilton's principle) and solved mathematically by means of the isoparametric finite element technique. Initially, the linear frequency parameters are obtained for different geometrical configuration via own computer code. The comparison and the corresponding convergence studies are performed for the unidirectional FG structure for the validation purpose. Finally, the impact of different influencing parameters like aspect ratio (O), thickness ratio (S), curvature ratio (R/h), porosity index (λ), type of porosity (even or uneven), power-law exponent (n), boundary condition on the free vibration characteristics are obtained for the FG panel and discussed in details.

Numerical Modeling of Long-Term Behavior of Geosynthetic Reinforced Soil Wall used in Bridge Abutment (보강토 교대 옹벽의 장기 거동에 대한 수치 모델링)

  • Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.105-112
    • /
    • 2011
  • This paper presents the numerical modelling technique for modeling the time-dependent behavior of geosynthetic reinforced soil wall under a sustained load. The applicability of power law-based creep models for modeling the creep deformations of geogrid and reinforced soil was first examined. The modeling approach was then used to simulate the long-term performance of a geosynthetic reinforced soil wall used in a bridge abutment. The results indicated that the power law-based models can be effectively used for modelling the long term behavior of geosynthetic reinforced walls under sustained loading. In addition, it was shown that, when using creep deformation susceptible backfill soils, the abutment wall and the sill beam may experience deformations exceeding allowable limits. Practical implications of the findings from this study are discussed in great detail.

Analysis of building frames with viscoelastic dampers under base excitation

  • Shukla, A.K.;Datta, T.K.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.1
    • /
    • pp.71-87
    • /
    • 2001
  • A frequency domain response analysis is presented for building frames passively controlled by viscoelastic dampers, under harmonic ground excitation. Three different models are used to represent the linear dynamic force-deformation characteristics of viscoelastic dampers namely, Kelvin model, Linear hysteretic model and Maxwell model. The frequency domain solution is obtained by (i) an iterative pseudo-force method, which uses undamped mode shapes and frequencies of the system, (ii) an approximate modal strain energy method, which uses an equivalent modal damping of the system in each mode of vibration, and (iii) an exact method which uses complex frequency response function of the system. The responses obtained by three different methods are compared for different combinations of viscoelastic dampers giving rise to both classically and non-classically damped cases. In addition, the effect of the modelling of viscoelastic dampers on the response is investigated for a certain frequency range of interest. The results of the study are useful in appropriate modelling of viscoelastic dampers and in understanding the implication of using modal analysis procedure for building frames which are passively controlled by viscoelastic dampers against base excitation.

Effect of parameters on the tensile behaviour of textile-reinforced concrete composite: A numerical approach

  • Tien M. Tran;Hong X. Vu;Emmanuel Ferrier
    • Advances in concrete construction
    • /
    • v.16 no.2
    • /
    • pp.107-117
    • /
    • 2023
  • Textile-reinforced concrete composite (TRC) is a new alternative material that can satisfy sustainable development needs in the civil engineering field. Its mechanical behaviour and properties have been identified from the experimental works. However, it is necessary for a numerical approach to consider the effect of the parameters on TRC's behaviour with lower analysis duration and cost related to the experiment. This paper presents obtained results of the numerical modelling for TRC composite using the cracking model for the cementitious matrix in TRC. As a result, the TRC composite exhibited a strain-hardening behaviour with the cracking phase characterized by the drops in tensile stress on the stress-strain curve. This model also showed the failure mode by multi-cracking on the TRC specimen surface. Furthermore, the parametric studies showed the effect of several parameters on the TRC tensile behaviour, as the reinforcement ratio, the length and position of the deformation measurement zone, and elevated temperatures. These numerical results were compared with the experiment and showed a remarkable agreement for all cases of this study.