• Title/Summary/Keyword: deformation modelling

Search Result 190, Processing Time 0.027 seconds

Structural behaviour of stainless steel stub column under axial compression: a FE study

  • Khate, Kevinguto;Patton, M. Longshithung;Marthong, Comingstarful
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1723-1740
    • /
    • 2018
  • This paper presents a Finite Element (FE) study on Lean Duplex Stainless Steel stub column with built-up sections subjected to pure axial compression with column web spacing varied at different position across the column flanges. The thicknesses of the steel sections were from 2 to 7 mm to encompass a range of section slenderness. The aim is to study and compare the strength and deformation capacities as well as the failure modes of the built-up stub columns. The FE results have been compared with the un-factored design strengths predicted through EN1993-1-4 (2006) + A1 (2015) and ASCE8-02 standards, Continuous Strength Method (CSM) and Direct Strength Method (DSM). The results showed that the design rules generally under predict the bearing capacities of the specimens. It's been observed that the CSM method offers improved mean resistance and reduced scatter for both classes of cross-sections (i.e. slender and stocky sections) compared to the EN1993-1-4 (2006) + A1 (2015) and ASCE 8-02 design rules which are known to be conservative for stocky cross-sections.

Three dimensional seismic deformation-shear strain-swelling performance of America-California Oroville Earth-Fill Dam

  • Karalar, Memduh;Cavusli, Murat
    • Geomechanics and Engineering
    • /
    • v.24 no.5
    • /
    • pp.443-456
    • /
    • 2021
  • Structural design of the vertical displacements and shear strains in the earth fill (EF) dams has great importance in the structural engineering problems. Moreover, far fault earthquakes have significant seismic effects on seismic damage performance of EF dams like the near fault earthquakes. For this reason, three dimensional (3D) earthquake damage performance of Oroville dam is assessed considering different far-fault ground motions in this study. Oroville Dam was built in United States of America-California and its height is 234.7 m (770 ft.). 3D model of Oroville dam is modelled using FLAC3D software based on finite difference approach. In order to represent interaction condition between discrete surfaces, special interface elements are used between dam body and foundation. Non-reflecting seismic boundary conditions (free field and quiet) are defined to the main surfaces of the dam for the nonlinear seismic analyses. 6 different far-fault ground motions are taken into account for the full reservoir condition of Oroville dam. According to nonlinear seismic analysis results, the effects of far-fault ground motions on the nonlinear seismic settlement and shear strain behaviour of Oroville EF dam are determined and evaluated in detail. It is clearly seen that far-fault earthquakes have very significant seismic effects on the settlement-shear strain behaviour of EF dams and these earthquakes create vital important seismic damages on the swelling behaviour of dam body surface. Moreover, it is proposed that far-fault ground motions should not be ignored while modelling EF dams.

Microstructural modeling of two-way bent shape change of composite two-layer beam comprising a shape memory alloy and elastoplastic layers

  • Belyaev, Fedor S.;Evard, Margarita E.;Volkov, Aleksandr E.;Volkova, Natalia A.;Vukolov, Egor A.
    • Smart Structures and Systems
    • /
    • v.30 no.3
    • /
    • pp.245-253
    • /
    • 2022
  • A two-layer beam consisting of an elastoplastic layer and a functional layer made of shape memory alloy (SMA) TiNi is considered. Constitutive relations for SMA are set by a microstructural model capable to calculate strain increment produced by arbitrary increments of stress and temperature. This model exploits the approximation of small strains. The equations to calculate the variations of the strain and the internal variables are based on the experimentally registered temperature kinetics of the martensitic transformations with an account of the crystallographic features of the transformation and the laws of equilibrium thermodynamics. Stress and phase distributions over the beam height are calculated by steps, by solving on each step the boundary-value problem for given increments of the bending moment (or curvature) and the tensile force (or relative elongation). Simplifying Bernoulli's hypotheses are applied. The temperature is considered homogeneous. The first stage of the numerical experiment is modeling of preliminary deformation of the beam by bending or stretching at a temperature corresponding to the martensitic state of the SMA layer. The second stage simulates heating and subsequent cooling across the temperature interval of the martensitic transformation. The curvature variation depends both on the total thickness of the beam and on the ratio of the layer's thicknesses.

Centrifuge shaking table tests on a friction pendulum bearing isolated structure with a pile foundation in soft soil

  • Shu-Sheng, Qu;Yu, Chen;Yang, Lv
    • Earthquakes and Structures
    • /
    • v.23 no.6
    • /
    • pp.517-526
    • /
    • 2022
  • Previous studies have shown that pile-soil interactions have significant influences on the isolation efficiency of an isolated structure. However, most of the existing tests were carried out using a 1-g shaking table, which cannot reproduce the soil stresses resulting in distortion of the simulated pile-soil interactions. In this study, a centrifuge shaking table modelling of the seismic responses of a friction pendulum bearing isolated structure with a pile foundation under earthquakes were conducted. The pile foundation structure was designed and constructed with a scale factor of 1:100. Two layers of the foundation soil, i.e., the bottom layer was made of plaster and the upper layer was normal soil, were carefully prepared to meet the similitude requirement. Seismic responses, including strains, displacement, acceleration, and soil pressure were collected. The settlement of the soil, sliding of the isolator, dynamic amplification factor and bending moment of the piles were analysed to reveal the influence of the soil structure interaction on the seismic performance of the structure. It is found that the soil rotates significantly under earthquake motions and the peak rotation is about 0.021 degree under 24.0 g motions. The isolator cannot return to the initial position after the tests because of the unrecoverable deformation of the soil and the friction between the curved surface of the slider and the concave plate.

Numerical investigation of the hysteretic response analysis and damage assessment of RC column

  • Abdelmounaim Mechaala;Benazouz Chikh;Hakim Bechtoula;Mohand Ould Ouali;Aghiles Nekmouche
    • Advances in Computational Design
    • /
    • v.8 no.2
    • /
    • pp.97-112
    • /
    • 2023
  • The Finite Element (FE) modeling of Reinforced Concrete (RC) under seismic loading has a sensitive impact in terms of getting good contribution compared to experimental results. Several idealized model types for simulating the nonlinear response have been developed based on the plasticity distribution alone the model. The Continuum Models are the most used category of modeling, to understand the seismic behavior of structural elements in terms of their components, cracking patterns, hysteretic response, and failure mechanisms. However, the material modeling, contact and nonlinear analysis strategy are highly complex due to the joint operation of concrete and steel. This paper presents a numerical simulation of a chosen RC column under monotonic and cyclic loading using the FE Abaqus, to assessthe hysteretic response and failure mechanisms in the RC columns, where the perfect bonding option is used for the contact between concrete and steel. While results of the numerical study under cyclic loading compared to experimental tests might be unsuccessful due to the lack of bond-slip modeling. The monotonic loading shows a good estimation of the envelope response and deformation components. In addition, this work further demonstrates the advantage and efficiency of the damage distributions since the obtained damage distributions fit the expected results.

Finite element modelling for the static bending response of rotating FG-GPLRC beams with geometrical imperfections in thermal mediums

  • Bui Manh Cuong;Abdelouahed Tounsi;Do Van Thom;Nguyen Thi Hai Van;Phung Van Minh
    • Computers and Concrete
    • /
    • v.33 no.1
    • /
    • pp.91-102
    • /
    • 2024
  • Beam-shaped components commonly rotate along a fixed axis when massive mechanical structures like rotors, jet engine blades, motor turbines, and rotating railway crossings perform their functions. For these structures to be useful in real life, their mechanical behavior is essential. Therefore, this is the first article to use the modified shear deformation theory type hyperbolic sine functions theory and the FEM to study the static bending response of rotating functionally graded GPL-reinforced composite (FG-GPLRC) beams with initial geometrical deficiencies in thermal media. Graphene platelets (GPLs) in three different configurations are woven into the beam's composition to increase its strength. By comparing the numerical results with those of previously published studies, we can assess the robustness of the theory and mechanical model employed in this study. Parameter studies are performed to determine the effect of various geometric and physical variables, such as rotation speed and temperature, on the bending reactions of structures.

Refined finite element modelling of circular CFST bridge piers subjected to the seismic load

  • Faxing Ding;Qingyuan Xu;Hao Sun;Fei Lyu
    • Computers and Concrete
    • /
    • v.33 no.6
    • /
    • pp.643-658
    • /
    • 2024
  • To date, shell-solid and fibre element model analysis are the most commonly used methods to investigate the seismic performance of concrete-filled steel tube (CFST) bridge piers. However, most existing research does not consider the loss of bearing capacity caused by the fracture of the outer steel tube. To fill this knowledge gap, a refined finite element (FE) model considering the ductile damage of steel tubes and the behaviour of infilled concrete with cracks is established and verified against experimental results of unidirectional, bidirectional cyclic loading tests and pseudo-dynamic loading tests. In addition, a parametric study is conducted to investigate the seismic performance of CFST bridge piers with different concrete strength, steel strength, axial compression ratio, slenderness ratio and infilled concrete height using the proposed model. The validation shows that the proposed refined FE model can effectively simulate the residual displacement of CFST bridge piers subjected to highintensity earthquakes. The parametric analysis indicates that CFST piers hold sufficient strength reserves and sound deformation capacity and, thus, possess excellent application prospects for bridge construction in high-intensity areas.

Connection rotation requirements on FRP-strengthened steel-concrete composite beam systems

  • Panagiotis M. Stylianidis;Michael F. Petrou
    • Structural Engineering and Mechanics
    • /
    • v.92 no.2
    • /
    • pp.133-147
    • /
    • 2024
  • Composite beams of steel and concrete strengthened with fiber-reinforced polymers (FRP) may exhibit considerably enhanced flexural behaviour, but the combination of three materials with different characteristics and the various possible failure mechanisms that may govern performance make their analysis quite demanding. Previous studies provided significant insights into this problem and several methods were proposed for calculating flexural stiffness and strength, but these studies are restricted to the single member level of a simply supported composite beam section. However, the problem considerably changes when the beam is part of a frame system due to the degree of continuity provided by the surrounding structure, which represents the most common situation in practice. This paper explores the behaviour of semi-continuous FRP-strengthened composite beams, by considering the response characteristics of their end connections and their effects on overall performance. A novel analytical model is derived, which enables a step-by-step representation of the nonlinear relationship between an incremental mid-span design bending moment and corresponding connection rotations. After verification against finite element analyses, a parametric study is conducted which shows that the substantially increased bending moment resistance of FRP-strengthened composite beams can hardly be fully utilized due to a deficiency of corresponding large deformation capacity available in the connections. The extent to which the presence FRP strengthening can be exploited to enhance the beam flexural response depends on the interplay between various structural parameters, including the connection rotation capacity, the beam span, and the FRP modulus of elasticity and ultimate strength.

Hydro-Mechanical Modelling of Fault Slip Induced by Water Injection: DECOVALEX-2019 TASK B (Step 1) (유체 주입에 의한 단층의 수리역학적 거동 해석: 국제공동연구 DECOVALEX-2019 Task B 연구 현황(Step 1))

  • Park, Jung-Wook;Park, Eui-Seob;Kim, Taehyun;Lee, Changsoo;Lee, Jaewon
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.400-425
    • /
    • 2018
  • This study presents the research results and current status of the DECOVALEX-2019 project Task B. Task B named 'Fault slip modelling' is aiming at developing a numerical method to simulate the coupled hydro-mechanical behavior of fault, including slip or reactivation, induced by water injection. The first research step of Task B is a benchmark simulation which is designed for the modelling teams to familiarize themselves with the problem and to set up their own codes to reproduce the hydro-mechanical coupling between the fault hydraulic transmissivity and the mechanically-induced displacement. We reproduced the coupled hydro-mechanical process of fault slip using TOUGH-FLAC simulator. The fluid flow along a fault was modelled with solid elements and governed by Darcy's law with the cubic law in TOUGH2, whereas the mechanical behavior of a single fault was represented by creating interface elements between two separating rock blocks in FLAC3D. A methodology to formulate the hydro-mechanical coupling relations of two different hydraulic aperture models and link the solid element of TOUGH2 and the interface element of FLAC3D was suggested. In addition, we developed a coupling module to update the changes in geometric features (mesh) and hydrological properties of fault caused by water injection at every calculation step for TOUGH-FLAC simulator. Then, the transient responses of the fault, including elastic deformation, reactivation, progressive evolutions of pathway, pressure distribution and water injection rate, to stepwise pressurization were examined during the simulations. The results of the simulations suggest that the developed model can provide a reasonable prediction of the hydro-mechanical behavior related to fault reactivation. The numerical model will be enhanced by continuing collaboration and interaction with other research teams of DECOLVAEX-2019 Task B and validated using the field data from fault activation experiments in a further study.

A Study on the Estimation for the Compressive Strength of Member According to the Knot Types (옹이 형태별 소재의 압축강도 예측에 관한 연구)

  • Kim, Gwang-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.170-177
    • /
    • 2010
  • Finite element numerical analysis was conducted with using the knot data which has a strong influence on the prediction of capacity for the structural wood member. Wood is a orthotropic property unlike other structural materials, so orthotropic property was applied. Knot was modelled as a cylinder shape, cone shape, and cubic shape. Compressive test was carried out to investigate the failure types and to calculate ultimate strengths for the wood members. Numerical model which can reflect the member size, number of knot, location of knot, size of knot was created and analyzed. By the numerical analysis using the ultimate compressive strength, numerical stress distribution types of each specimen was compared to real failure types for the test specimen. Cylinder shape modelling might be most reasonable, according to the necessary time for the analysis, the difficulty of element meshing, and the similarity of stress transfer around knot. Moreover, according to the stress and deformation distribution for the numerical analysis, failures or cracks of real specimen were developed in the vicinity of stress concentrated section and most transformed section. Based on the those results, numerical analysis could be utilized as a useful method to analyze the performance of bending member and tensile member, if only orthotropic property and knot modelling were properly applied.