• Title/Summary/Keyword: deformation height

Search Result 396, Processing Time 0.024 seconds

Creep Deformation Characteristics of Weathered Granite Soil (화강풍화토의 creep 변형특성)

  • Park, Heung-Gyu;Kim, Yong-Ha;Paeng, Woo-Seon;Lee, Hae-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.43-52
    • /
    • 2007
  • This study analyzes the characteristics of creep deformation behavior of weathered granite soils used in road embankments. The creep strain under the unconfined compressive state demonstrated an excellent agreement with the theoretical analysis of the burgers substance. The elastic deformation showed a termination in its characteristics after a long-term period owing to the increase in applied loads. The primary creep strain was 0.0028 and concluded that the deformation completed within $3{\sim}5$ days after applying the loads. Also, the completing time of creep deformation in the embankment soils increased in proportion to the height of embankment soils. The secondary creep strain is about 50% of the primary creep strain.

The bonding mechanism and bond strength of cold pressure welding (엡셋팅에 의한 냉간 압접의 결합 기구와 결합강도)

  • 한인철;김재도
    • Journal of Welding and Joining
    • /
    • v.8 no.3
    • /
    • pp.31-38
    • /
    • 1990
  • The bonding mechanism and bond strength were investigated for the cold pressure welding of Al to Al, Cu to Cu and Al to Cu by upsetting. A phenomenon of bonding betweenthe metallic components has been observed by a scanning electron microscope and metallurgical microscope. A modified equation for bond strength with respect to the reduction of height shows reasonably a good agreement with the experimental data. When the values of the hardening factor and threshold deformation for the given materials could be determined, the theoretical bond strength can be calculated.

  • PDF

Study on the cold pressure welding by upsetting (업셋팅 을 이용한 냉간압접 에 대한 연구)

  • 안기원;김재도
    • Journal of Welding and Joining
    • /
    • v.3 no.2
    • /
    • pp.27-34
    • /
    • 1985
  • The mechanical properties and bonding mechanism of aluminum, copper and mild steel have been determined in cold pressure welding. The brittle cover layer to be established by scratch-brushing plays an important role in bond strength and has an influence on the threshold of deformation. The cold pressure welding was achieved at 54% of height reduction in A1-A1, 75% in Cu-Cu, 56% in Al-Cu, and 74% in Cu-steel. The height reduction at which the bond strength of weld interface was the same as the tensile strength of base metal should be over 76% in Al-Al, 82% in Cu-Cu, and 78% in Al-Cu.

  • PDF

Deformation and stress behavior analysis of high concrete dam under the effect of reservoir basin deformation

  • Zheng, Dongjian;Xu, Yanxin;Yang, Meng;Gu, Hao;Su, Huaizhi;Cui, Xinbo;Zhao, Erfeng
    • Computers and Concrete
    • /
    • v.18 no.6
    • /
    • pp.1153-1173
    • /
    • 2016
  • According to deformation data measured in some high concrete dams, for dam body deformation, there is a complex relationship with dam height and water head for different projects, instead of a simple monotonic relationship consistently. Meanwhile, settlement data of some large reservoirs exhibit a significant deformation of reservoir basin. As water conservancy project with high concrete dam and large storage capacity increase rapidly these decades, reservoir basin deformation problem has gradually gained engineers' attentions. In this paper, based on conventional analytical method, an improved analytical method for high concrete dam is proposed including the effect of reservoir basin deformation. Though establishing FEM models of two different scales covering reservoir basin and near dam area respectively, influence of reservoir basin on dam body is simulated. Then, forward and inverse analyses of concrete dam are separately conducted with conventional and proposed analytical methods. And the influence of reservoir basin deformation on dam working behavior is evaluated. The results of two typical projects demonstrate that reservoir basin deformation will affect dam deformation and stress to a certain extent. And for project with large and centralized water capacity ahead of dam site, the effect is more significant than those with a slim-type reservoir. As a result, influence of reservoir basin should be taken into consideration with conducting analysis of high concrete dam with large storage capacity.

An empirical formulation to predict maximum deformation of blast wall under explosion

  • Kim, Do Kyun;Ng, William Chin Kuan;Hwang, Oeju
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.237-245
    • /
    • 2018
  • This study proposes an empirical formulation to predict the maximum deformation of offshore blast wall structure that is subjected to impact loading caused by hydrocarbon explosion. The blast wall model is assumed to be supported by a simply-supported boundary condition and corrugated panel is modelled. In total, 1,620 cases of LS-DYNA simulations were conducted to predict the maximum deformation of blast wall, and they were then used as input data for the development of the empirical formulation by regression analysis. Stainless steel was employed as materials and the strain rate effect was also taken into account. For the development of empirical formulation, a wide range of parametric studies were conducted by considering the main design parameters for corrugated panel, such as geometric properties (corrugation angle, breadth, height and thickness) and load profiles (peak pressure and time). In the case of the blast profile, idealised triangular shape is assumed. It is expected that the obtained empirical formulation will be useful for structural designers to predict maximum deformation of blast wall installed in offshore topside structures in the early design stage.

Stress Analysis of Blanking Plate Applied by Press (프레스에 의한 블랭킹 판재의 응력 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.66-71
    • /
    • 2008
  • The data of the deformation and the stress according to time are studied at upper model of press and lower model of the blanking plate applied by press with the width, length and height of 0.4 m and 0.6 m respectively. The press is pushing downward on the plate fixed at the lower floor. These data are compared and investigated through this study. By using these results, there is the maximum deformation at 4 corners in the lower plate model of aluminium alloy fixed at lower floor. This deformation incase of elapsed time of 0.6 second becomes 4 times as much as in case of elapsed time of 0.2 second. The quantity of deformation at the lower plate model becomes more than at the upper press model to the extent of 10%. At the lower plate model of aluminium alloy, there is the maximum Von-Mises equivalent stress at 4 corners and both sides of middle area on the lower plate model of aluminium alloy. This stress in case of elapsed time of 0.6 second becomes 6 times as much as in case of elapsed time of 0.2 second. The Von-Mises equivalent stress of lower plate model becomes 2 times as much as that of upper press mode.

  • PDF

Cyclic tests and numerical study of composite steel plate deep beam

  • Hu, Yi;Jiang, Liqiang;Zheng, Hong
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.23-34
    • /
    • 2017
  • Composite steel plate deep beam (CDB) is proposed as a lateral resisting member, which is constructed by steel plate and reinforced concrete (RC) panel, and it is connected with building frame through high-strength bolts. To investigate the seismic performance of the CDB, tests of two 1/3 scaled specimens with different length-to-height ratio were carried out under cyclic loads. The failure modes, load-carrying capacity, hysteretic behavior, ductility and energy dissipation were obtained and analyzed. In addition, the nonlinear finite element (FE) models of the specimens were established and verified by the test results. Besides, parametric analyses were performed to study the effect of length-to-height ratio, height-to-thickness ratio, material type and arrangement of RC panel. The experimental and numerical results showed that: the CDBs lost their load-carrying capacity because of the large out-of plane deformation and yield of the tension field formed on the steel plate. By increasing the length-to-height ratio of steel plate, the load-carrying capacity, elastic stiffness, ductility and energy dissipation capacity of the specimens were significantly enhanced. The ultimate loading capacity increased with increasing the length-to-height ratio of steel plate and yield strength of steel plate; and such capacity increased with decreasing of height-to-thickness ratio of steel plate and gap. Finally, a unified formula is proposed to calculate their ultimate loading capacity, and fitting formula on such indexes are provided for designation of the CDB.

Large deformation modeling of flexible manipulators to determine allowable load

  • Esfandiar, Habib;Korayem, Moharam H.;Haghpanahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.619-629
    • /
    • 2017
  • This paper focuses on the study of complete dynamic modeling and maximum dynamic load carrying capacity computation of N-flexible links and N-flexible joints mobile manipulator undergoing large deformation. Nonlinear dynamic analysis relies on the Timoshenko theory of beams. In order to model the system completely and precisely, structural and joint flexibility, nonlinear strain-displacement relationship, payload, and non-holonomic constraints will be considered to. A finite element solution method based on mixed method is applied to model the shear deformation. This procedure is considerably more involved than displacement based element and shear deformation can be readily included without inducing the shear locking in the element. Another goal of this paper is to present a computational procedure for determination of the maximum dynamic load of geometrically nonlinear manipulators with structural and joint flexibility. An effective measure named as Moment-Height Stability (MHS) measure is applied to consider the dynamic stability of a wheeled mobile manipulator. Simulations are performed for mobile base manipulator with two flexible links and joints. The results represent that dynamic stability constraint is sensitive when calculating the maximum carrying load. Furthermore, by changing the trajectory of end effector, allowable load also changes. The effect of torsional spring parameter on the joint deformation is investigated in a parametric sensitivity study. The findings show that, by the increase of torsional stiffness, the behavior of system approaches to a system with rigid joints and allowable load of robot is also enhanced. A comparison is also made between the results obtained from small and large deformation models. Fluctuation range in obtained figures for angular displacement of links and end effector path is bigger for large deformation model. Experimental results are also provided to validate the theoretical model and these have good agreement with the simulated results.

A Study of the Plastic Deformation in Axisymmetric Combined Extrusion (축대칭 복합압출공정의 소성변형 연구)

  • 한철호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2005-2015
    • /
    • 1994
  • An analytical method based on the upper bound approach for the cup-bar axisymmetric combined extrusion is presented to determine the deformation zones as well as extrusion load and deformed geometry in the early stage. A new kiematically admissible velocity field is derived by the appropriate transformation of the original velocity field and applying the flow function approach. The derived velocity field is directly related to the boundary function for the plastically deforming zones and the parameter controlling the flow direction to the forward part or backward part. Experiments are carred out with the annealed aluminum 2024 at room temperature for the various area reductions. The workhardening effect is considered in the formulation as a function of the height ratio between the deformed billet and the orighinal billet to calculate the extrusion pressures. The theoretical predictions for the extrusion loads and deformed configuration are in good agreement with the experimental results.

Baseplate Design to Improve Swaging Performance of Actuator in a HDD (HDD 액추에이터의 스웨이징성능향상을 위한 베이스플레이트 최적설계)

  • Lee, Haeng-Soo;Hong, Eo-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.760-766
    • /
    • 2009
  • In the manufacturing process of HDD, ball swaging method is commonly used to joint the Head Gimbal Assembly(HGA) with the arm of the actuator. The hub on the HGA is placed into the hole of the actuator arm, and the hub and arm is bonded by the pressure of steel ball. The pressure for plastic deformation on the baseplate causes the undesirable deformation on HGA, such as tilting, flying height change of head. After obtaining the key parameters that have large sensitivity on the swaging process, the optimal shape of baseplate is proposed to increase the static performance during swaging process. Contribution of the proposed design for the swaging performance is verified by contact simulation with elasto-plastic deformation.