• Title/Summary/Keyword: deforestation rate

Search Result 28, Processing Time 0.019 seconds

Deforestation and Forest land Use in Côte d'Ivoire: Policy and Fiscal Instruments

  • Djezou, Wadjamsse Beaudelaire
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.1
    • /
    • pp.55-67
    • /
    • 2016
  • This paper investigated policies that drive the sustainable management of Ivorian forest which disappear at an annual rate of 250000 hectares. Based on an inter-temporal model for optimum allocation of forest land to three competing uses, the article found that sustainability depends on the incentive structure, of which forest taxes and fees are a key, though obviously not the sole, component. The study proposed to increase the area fee level by accounting for environmental externalities generated by forest harvesters and farmers. The paper showed that the area fee is a decreasing function of the forest natural rate of regeneration and the reconversion rate of agricultural surfaces. Finally, at the given forest natural rate of regeneration and the reconversion rate of agricultural surfaces, the model argued that the area fee need to be progressive (arithmetic progression) in the context of ecological equilibrium break while it should remain constant in normal situation.

Recent Changes of Sedimentation Rate in Lake Takkobu, Northern Japan, Determined 210Pb Dating (210Pb 연대측정에 의한 일본 타호부호수의 토사퇴적속도 변화 분석)

  • Ahn, Young Sang;An, Ki-Wan;Lee, Kye-Han;Nakamura, Futoshi
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.1
    • /
    • pp.80-86
    • /
    • 2014
  • $^{210}Pb$ dating was conducted to examine the influence of land use changes in the forest catchment on lake sedimentation. The Kushiro River, into which Lake Takkobu drains under regular flow conditions, contributed to an increased sedimentation rate in sampling point at the lake outflow because turbid water from the Kushiro River flows back into Lake Takkobu during floods. The elevated sediment flux from the catchment dilutes the $^{210}Pb$ concentration in sampling points at the inflow of the Takkobu River and the lake outflow, which causes fluctuations in the $^{210}Pb$ concentrations in sediment cores. The $^{210}Pb$ dating was estimated using the CRS (Constant rate of Supply) model. The dates by the CRS model in Lake Takkobu profiles were in good agreement with the dates by $^{137}Cs$. Sedimentation rates reconstructed for the past 100-150 years suggested that sedimentation rates increased drastically following land use changes. While a natural sedimentation rate of $0.01-0.03g/cm^2/year$ is observed until the 1880s, whereas lake sedimentation accelerated to $0.03-0.09g/cm^2/year$ following land use changes such as deforestation and channelization, between the 1880s and 1940s. In particular, the sedimentation rates have been associated with deforestation, channelization, agricultural development and road construction, since the 1980s, and these rates were about 9-28 times higher than those under natural conditions, leading to accelerated lake shallowing.

Spatial and temporal dynamic of land-cover/land-use and carbon stocks in Eastern Cameroon: a case study of the teaching and research forest of the University of Dschang

  • Temgoua, Lucie Felicite;Solefack, Marie Caroline Momo;Voufo, Vianny Nguimdo;Belibi, Chretien Tagne;Tanougong, Armand
    • Forest Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.181-191
    • /
    • 2018
  • This study was carried out in the teaching and research forest of the University of Dschang in Belabo, with the aim of analysing land-cover and land-use changes as well as carbon stocks dynamic. The databases used are composed of three Landsat satellite images (5TM of 1984, 7ETM + of 2000 and 8OLI of 2016), enhanced by field missions. Satellite images were processed using ENVI and ArcGIS software. Interview, focus group discussion methods and participatory mapping were used to identify the activities carried out by the local population. An inventory design consisting of four transects was used to measure dendrometric parameters and to identify land-use types. An estimation of carbon stocks in aboveground and underground woody biomass was made using allometric models based on non-destructive method. Dynamic of land-cover showed that the average annual rate of deforestation is 0.48%. The main activities at the base of this change are agriculture, house built-up and logging. Seven types of land-use were identified; adult secondary forests (64.10%), young secondary forests (7.54%), wetlands (7.39%), fallows (3.63%), savannahs (9.59%), cocoa farms (4.28%) and mixed crop farms (3.47%). Adult secondary forests had the highest amount of carbon ($250.75\;t\;C\;ha^{-1}$). This value has decreased by more than 60% for mixed crop farms ($94.67\;t\;C\;ha^{-1}$), showing the impact of agricultural activities on both forest cover and carbon stocks. Agroforestry systems that allow conservation and introduction of woody species should be encouraged as part of a participatory management strategy of this forest.

Forest Transition in Korea:Trends, Characteristics and Implications (한국의 산림 변천:추이, 특징 및 함의)

  • Bae, Jae Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.6
    • /
    • pp.659-668
    • /
    • 2009
  • Time series data on forest resources and population over the period from 1927 to 2007 were constructed and analyzed in order to identify trends and characteristics of forest transition in Korea. Korean forest transition could be classified into three phases in terms of the average annual growing stock of forest; forest degradation period (1927-1952), forest stagnation period (1953-1972) and forest growth period (1973-2007). Over the past 80 years forest area decreased 0.05% each year. The decreasing rate was very low, especially considering rapid economic growth and increased population of Korea with over 60% of forest cover. Growing stock per hectare significantly increased from $5.6m^3$ in 1952 to $97.8m^3$ in 2007, or 17.5 times during 1952 to 2007. Despise of increasing population and rapid economic growth, in particular, growing stock per capita has increased from $1.7m^3$ in 1952 to $12.9m^3$ in 2005 and un-stocked forest area decreased from 3,315 thousand ha to 165 thousand ha during the same period. In this regard, Korea represents a case of modern forest growth. Among 56 countries with more than 10 million of population and 10% or more of forest cover over the period 1990 to 2005, Korea is classified as a country which has high forest cover but low deforestation rate. Also, Korea is the only developing country which has 50% or more of forest cover and shows a below average deforestation rate.

Application of Vegetation Indices for Forest Degradation Using Landsat TM Data

  • Kim, Choen;Joung, Khang-Ho
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.192-197
    • /
    • 1998
  • This paper demonstrates that it is feasible to evaluate forest degradation and to detect deforestation in the 8156$km^2$ study area affected by expand farming using vegetation indices derived from Landsat TM data. The NDVI-growing stock relation was applied on th Landsat TM data and a 3 second grid DEM, whose coverages could improve the assessment of forest degradation and also estimate the rate of change of forest cover area depending on elevation intervals. The strength of the relationship between the ratio of the greenness and brightness indices and forest degradation conditions would have been more interesting in the deforested areas which were converted to crop farming land.

  • PDF

Historical Changes of Sediment Accumulation in Lake Shirarutoro Due to Land Use Development in the Forest Catchment, Kushiro Mire in Northern Japan

  • Ahn, Young-Sang
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.413-421
    • /
    • 2009
  • Eleven lake sediment core samples were obtained and analyzed to develop a chronology using $^{137}Cs$ (in 1963) and two tephra layers (Ko-c2 in 1694 and Ta-a in 1739). Sedimentation rates estimated for the past ca 300 years in Lake Shirarutoro indicated that catchment development has influenced the shallowing process in the lake by increasing sediment production. The sediment yield under initial land-use development conditions for the first two periods was estimated as 514 tons $yr^{-1}$ from 1694 to 1739 and 542 tons $yr^{-1}$ from 1739~1963. The development of the Shirarutoro catchment intensified in the 1960s with deforestation and agriculture activity leading to an increased sediment yield of 1261 tons $yr^{-1}$ after 1963. The sediment yields after intensified land use development, such as forestry and agricultural development, were about 2 times higher than that under initial development conditions, leading to accelerated lake shallowing over the last ca 50 years. Sedimentation rates differed with location in the lake because of spatial variation in the sediment flux from the contributing rivers and their catchments. The sedimentation rates before 1963 were low in all sites except for one site close to the Shirarutoroetoro River. The sedimentation rate in 1739~1963 was accumulated mostly at the inflow of the Shirarutoroetoro River by sediment production associated with forestry for charcoal production and initial agricultural development. The sedimentation rate after 1963 increased. In particular, the southern zone of the lake near the conjunction with the Kushiro River had a high sedimentation rate, which is attributable to sediment inflow back from the Kushiro River during floods.

IBA Treatment of Poplar Cuttings and Soil Composition Amendment for Improved Adaptability and Survival

  • Cho, Wonwoo;Chandra, Romika;Lee, Wi-young;Kang, Hoduck
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.4
    • /
    • pp.259-266
    • /
    • 2020
  • Poplar trees from the Salicaceae family over the years have been utilized for various reasons which include prevention of deforestation as well as phytoremediation. This study aims to determine the optimal pre-treatment and soil conditions required for propagation of poplar cuttings for increased initial adaptability and survival rate. Five poplar clones (Hanan, 110, 107, DN-34, 52-225) were selected for IBA, soil composition treatments on propagation. IBA pre-treatment of cuttings were utilized 0, 10, and 100 mg l-1 concentrations. Soil compositions were amended with TKS-2+perlite 2:1 (v:v) and sandy clay loam mixed with artificial soil. According to the greenhouse results 10 mg l-1 of IBA showed a significant increase in plant height whereas 100 mg l-1 inhibited plant growth except in clone 110. Soil composition severely affected root growth and hence overall growth of the clones. Sandy clay loam soil had poor to stunted growth compared to TKS-2+perlite.

Assessment of the Potential Carbon Credits from Reducing Emissions from Deforestation and Enhancement of Forest Carbon Stock Activities in Developing Countries (개도국의 산림전용으로 인한 온실가스 배출량 감축 및 산림탄소축적 증진 활동의 탄소배출권 잠재력 평가)

  • Bae, Jae Soo;Bae, Ki Kang
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.3
    • /
    • pp.263-271
    • /
    • 2009
  • This study aims to identify negotiation alternatives related to Post-2012 reducing emissions from deforestation (RED) and enhancement of forest carbon stock (EFCS) activities. It also aims to recommend a negotiation strategy considering environmental integrity and national interest on the basis of estimating reduction potentials of each alternative on the assumption that tradable carbon credits play an important role as positive incentives. In order to estimate greenhouse gas (GHG) reduction potentials and income potential from RED and EFCS activities, 99 countries were selected by the Global Forest Resources Assessment of the Food and Agriculture Organization of the United Nations. A 'baseline and credit' method was applied to estimate RED activities. Gross-net and net-net methods were applied for EFCS activities. According to the results, Brazil, Indonesia, and the Democratic Republic of Congo have more potential to get positive incentives through RED, while China, Chile, and the Republic of Korea have more potential to get positive incentives through EFCS. This study suggests including both RED and EFCS activities in the boundary of policy approaches and endowment of positive incentives to consider GHG reduction potentials in the global scale and equity among developing countries. Making a discount rate application of forest management activities can be also recommended to factor out the effects of human-induced activities by EFCS activities.

The Vegetational History of korea During the Holocene Period (홀로세 중 한국의 식생사)

  • 강우석
    • The Korean Journal of Quaternary Research
    • /
    • v.8 no.1
    • /
    • pp.9-22
    • /
    • 1994
  • The vegetational and environmental history of Korea during the Holocene period has reconstructed by the use of folral, palaeoclimatogical, archaeological data and written records. From 10,000 to 6,700 yeat B.P. in mid-eastern Korea, deciduous broadieaved trees gradually increased trees, notably at c.8,000 years B.P. From 6,700 to 4,500 years B.P., the vegetation remained dominated by Quercus and pinus(Diploxylon). Vegetational informations suggest the postglacial hypsithermal from c.8,000 to 4,500 years b.p. After 4,500 until 1,400 years B.P., the admixture of cryophilous trees in midland and thermophilous trees in south seems to imply the latitudinal divisions of vegetation and climate. The presence of cultivated rice pollen as well as non-arboreal pollen and spores indicates an increased rate of deforestation. From 1,400 years B.P., there was a sharp decrease in the representation of temperate trees, but the presence of the cryophilous genera Abies and pinus (Haploxylon) is noticea-ble and might be related to the occurrence of Little Ice Age. Fossil pollen diagram from western Korea and eastern Korea since 6,250 and 10,000 yeats B.P., respectively have enabled to compare vegetational dis-tribution patterns and changes in the Holocene period. In western Korea, Alnus- dominated vegetation continued from 6,250 to 1,500 years B.P., but pinus took over Alnus from 1,500 years B.P. In eastern Korea, however, Quercus and pinus dominated from 10,000 to 2,000 years B.P., but pinus be-came predominant from 2,000 years B.P. On a time- spatial basis, different vegetational distribution pattern can be recognised between western and east-ern Korea. The use of seven historical records which is unique to Korea also enabled to reconstruct the distributional pattern and temporal change of vegetation from 1425 to 1928.

  • PDF

Economic Feasibility of REDD Project for Preventing Deforestation in North Korea (북한 산림전용 방지수단으로서의 REDD 사업의 경제적 타당성 분석)

  • Jo, Jang Hwan;KOO, Ja Choon;Youn, Yeo Chang
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.4
    • /
    • pp.630-638
    • /
    • 2011
  • This study aims to verify the economic validity of the REDD project in North Korea by estimating the potential carbon credits and the cost of REDD project. The REDD potential credits of North Korea are estimated based on the international statistics of forest area and population from 1990 to 2010, and the cost of REDD project is estimated indirectly by annual land opportunity cost of agriculture assuming that South Korea will aid the food production per area in North Korea. When the 25% reduction scenario was applied to the annual deforestation rate in North Korea, the potential REDD credits were estimated to be $4,232million{\sim}5,290milliontCO_2eq.$ for 20 years. It would account for 28~35% of South Korea's national medium-term greenhouse gas reduction target. On the other hand, the break-even price of REDD project was calculated as the profit of agriculture in the land available by forest conversion in North Korea. It was estimated to be 19.19$/$tCO_2eq.$ when the non-permanence risk of forest conserved through a REDD contract is assumed to be 20%. This price is higher than the price of REDD carbon credit 5$/$tCO_2eq.$ dealt in the 2010 voluntary carbon market, leading to no economic feasibility. However, REDD project provides co-benefits besides climate mitigation. As previous studies indicate, the break-even price is lower than 20$/$tCO_2eq.$, which is the social marginal cost of greenhouse gas emissions by loss of forest. Therefore REDD in North Korea can be justified against the social benefits. The economic feasibility of REDD project in North Korea can be largely influenced by the risk percentage. Thus, North Korean REDD project needs a strong guarantee and involvement by the government and people of North Korea to assure the project's economic feasibility.