• 제목/요약/키워드: deflection theory

검색결과 427건 처리시간 0.024초

에너지법에 의한 연속 곡선박스형교의 정적해석에 관한 연구 (A Study on the Static Analysis of the Cintinuous Curved Box Girder Bridge using Energy Method)

  • 장병순;서상근;이동준
    • 한국강구조학회 논문집
    • /
    • 제13권2호
    • /
    • pp.163-176
    • /
    • 2001
  • 본 논문에서는 뒴비틀림 효과를 고려한 휨비틀림 이론을 기초로 연속곡선보를 해석한다. 먼저 단순곡선보에 대해 미분방정식으로 단면력과 변위를 구한다. 다음 에너지법을 이용하여 n경간 연속곡선보에 대한 탄성방정식으로 연속곡선보의 임의점에서 단면력과 변위의 해를 구한다. 작용하중으로 수직집중하중과 수직등분포하중을 고려하여 해석하였으므로 실제 하중이 작용하는 연속곡선박스거더의 단면력과 변위를 쉽게 구할 수 있다.

  • PDF

유성 기어 유동 중개륜의 컴플라이언스 해석 (Analysis of Compliance of Planetary Gears based on Floating Intermediate Rings)

  • 조인성
    • Tribology and Lubricants
    • /
    • 제29권6호
    • /
    • pp.378-385
    • /
    • 2013
  • An epicyclic gearing system is compact and lightweight. However, it is difficult to share the driving force equally because the system has closed gear trains with multiple driving points, and it always has geometrical errors in the elements. Thus, in the case of planetary gears, the first problem is how to distribute the load evenly to the numerous planets. The method widely used abroad for this purpose is to utilize the elastic deformation of the components of the structure. However, the deflection is very complicated, and it is very easy for vibration problems to occur because of the decrease in the natural frequencies. Therefore, to equalize the load on the planets, this paper discusses the principle and theory behind the functioning of a floating intermediate ring. This magnifies the displacement of a planet's center arising from the equilibrium of the load and the lubricating film pressure, which improves the compliance of the planets. The results show that load equalization of the planets is possible through this improvement in their compliance.

탄소나노튜브 액츄에이터의 이론적 모델링 (Analytical Modeling of Carbon Nanotube Actuators)

  • 염영일;박철휴
    • 제어로봇시스템학회논문지
    • /
    • 제10권11호
    • /
    • pp.1006-1011
    • /
    • 2004
  • Carbon nanotubes have outstanding properties which make them useful for a number of high-technology applications. Especially, single-walled carbon nanotube (SWNT), working under physical conditions (in aqueous solution) and converting electrical energy into mechanical energy directly, can be a good substitute for artificial muscle. The carbon nanotube structure simulated in this paper is an isotropic cantilever type with an adhesive tape which is sandwiched between two SWNTs. For predicting the geometrical and physical parameters such as deflection, slope, bending moment and induced force with various applied voltages, the analytical model for a 3 layer bimorph nanotube actuator is developed by applying Euler-Bernoulli beam theory. The governing equation and boundary conditions are derived from energy Principles. Also, the brief history of carbon nonotube is overviewed and its properties are compared with other functional materials. Moreover, an electro-mechanical coupling coefficient of the carbon nanotube actuator is discussed to identify the electro-mechanical energy efficiency.

Thermomechanical postbuckling of imperfect moderately thick plates on two-parameter elastic foundations

  • Shen, Hui-Shen
    • Structural Engineering and Mechanics
    • /
    • 제4권2호
    • /
    • pp.149-162
    • /
    • 1996
  • A postbuckling analysis is presented for a simply supported, moderately thick rectangular plate subjected to combined axial compression and uniform temperature loading and resting on a two-parameter elastic foundation. The two cases of thermal postbuckling of initially compressed plates and of compressive postbuckling of initially heated plates are considered. The initial geometrical imperfection of the plate is taken into account. The formulations are based on the Reissner-Mindlin plate theory considering the first order shear deformation effect, and including the plate-foundation interaction and thermal effect. The analysis uses a deflection-type perturbation technique to determine the buckling loads and postbuckling equilibrium paths. Numerical examples cover the performances of perfect and imperfect, moderately thick plates resting on Winkler or Pasternak-type elastic foundations. Typical results are presented in dimensionless graphical form.

센서유형별 측정 변형률을 이용한 철근콘크리트 보의 처짐추정에 관한 실험적 연구 (An experimental study on estimating deflection of RC beam using resistive strain gauge and fiber optic sensor)

  • 이규완;박기태;박흥석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.517-522
    • /
    • 2000
  • In the past few years, the nondestructive inspection technology has greatly developed due to the increased necessity to gain a complete understanding of the bridge behavior. Especially, the deformations of bridges contain a lot of informations about its health state. By measuring these deformations it is possible to analyze the loading and aging behavior of the structure. However, the current methods (such as LVDT, dial gage, optical displacement tranceducer, etc) are often of changeable application on site and have the limitations of installation. In this paper, the classical beam theory was reviewed and the deflections of structure are estimated using measured strain which is easy to acquire. The applicability of this algorithm is verified by a preliminary steel beam test and two types of concrete beam tests. Also fiber optic sensors as well as resistive strain gages were installed in the concrete beams to establish the applicability of fiber optic sensors in the field of civil engineering.

  • PDF

ZTA-SiC whisker계 재료의 기계적 및 구조적 특성 (Mechanical and Microstructural Characterization of ZTA-SiC Whisker Composite)

  • 이응상;최성철;정연길
    • 한국세라믹학회지
    • /
    • 제28권9호
    • /
    • pp.696-704
    • /
    • 1991
  • ZrO2-Toughened Alumina-Ceramics (ZTA) with SiC Whisker as dispersive additive were prepared by pressureless sintering at 1$600^{\circ}C$ and 1$650^{\circ}C$ and by HIPing at 1$600^{\circ}C$ in Ar atmosphere. Effects of SiC-Whisker addition on microstuructural, mechanical, and thermal properties were investigated and the toughening mechanisms between theory and experiment were compared. Specimens with 15 vol% Whisker prepared by HIPing showed 8.26 MPa.ma1/2 in fracture toughness and 600 MPa in flexural strength owing to contribution of the three mechanisms such as crack deflection, whisker bridging and whisker pullout in spite of difference between the theoretical and experimental values due to the partial inhomogeneous dispersion of SiC-Whisker in the matrix and the processing flaw.

  • PDF

국부좌굴과 횡좌굴을 고려한 냉간성형 ㄷ 형강보의 해석 (Analysis of Cold-Formed Steel Beams Considering Local Buckling and Lateral Buckling)

  • 전재만;이재홍
    • 한국공간구조학회논문집
    • /
    • 제6권3호
    • /
    • pp.77-86
    • /
    • 2006
  • 본 논문은 횡하중을 받는 냉간성형 ㄷ 형강보의 응력해석에 관해 다루고 있다. 냉간형강 보에 가해지는 각 하중 레벨에서의 응력을 계산하여 국부좌굴과 횡좌굴을 고려하여 구조해석을 실시하였다. 해석모델은 박벽보의 기본이론에 의해 유도되었으며 1차원 보요소 유한요소해석을 통하여 수치해석을 하였다. 수치해석결과는 AISI 규준과 비교되었으며, 본 연구에서 제안된 해석모델이 냉간형강보의 처짐뿐 아니라 응력도 매우 정확히 예측함을 알 수 있었다.

  • PDF

Vibration, buckling and dynamic stability of a cantilever rectangular plate subjected to in-plane force

  • Takahashi, Kazuo;Wu, Mincharn;Nakazawa, Satoshi
    • Structural Engineering and Mechanics
    • /
    • 제6권8호
    • /
    • pp.939-953
    • /
    • 1998
  • Vibration, buckling and dynamic stability of a cantilever rectangular plate subjected to an in-plane sinusoidally varying load applied along the free end are analyzed. The thin plate small deflection theory is used. The Rayleigh-Ritz method is employed to solve vibration and buckling of the plate. The dynamic stability problem is solved by using the Hamilton principle to drive time variables. The resulting time variables are solved by the harmonic balance method. Buckling properties and natural frequencies of the plate are shown at first. Unstable regions are presented for various loading conditions. Simple parametric resonances and combination resonances with sum type are obtained for various loading conditions, static load and damping.

Creep analysis of concrete filled steel tube arch bridges

  • Wang, Y.F.;Han, B.;Du, J.S.;Liu, K.W.
    • Structural Engineering and Mechanics
    • /
    • 제27권6호
    • /
    • pp.639-650
    • /
    • 2007
  • Applying the method calculating creep of Concrete Filled steel Tube (CFT) members based on the Elastic Continuation and Plastic Flow theory for concrete creep with the finite element method, the paper develops a new numerical method for the creep of CFT arch bridges considering effects of bending moment. It is shown that the method is feasible and reasonable through comparing the predicted stresses and deflection caused by the creep with the results obtained by the method of Gu et al. (2001) based on ACI209R model and experimental data of an actual CFT arch bridge. Furthermore, nine CFT arch bridges with different types are calculated and analyzed with and without the effects of bending moment. As a result, the bending moment has considerable influences on long-term deformations and internal forces of CFT arch bridges, especially when the section of arch rib is subjected to a large bending moment.

Bending behavior of SWCNT reinforced composite plates

  • Chavan, Shivaji G.;Lal, Achchhe
    • Steel and Composite Structures
    • /
    • 제24권5호
    • /
    • pp.537-548
    • /
    • 2017
  • In this paper presents bending characteristic of single wall carbon nanotube reinforced functionally graded composite (SWCNTRC-FG) plates. The finite element implementation of bending analysis of laminated composite plate via well-established higher order shear deformation theory (HSDT). A seven degree of freedom and $C^0$ continuity finite element model using eight noded isoperimetric elements is developed for precise computation of deflection and stresses of SWCNTRC plate subjected to sinusoidal transverse load. The finite element implementation is carried out through a finite element code developed in MATLAB. The results obtained by present approach are compared with the results available in the literatures. The effective material properties of the laminated SWCNTRC plate are used by Mori-Tanaka method. Numerical results have been obtained with different parameters, width-to-thickness ratio (a/h), stress distribution profile along thickness direction, different SWCNTRC-FG plate, boundary condition, through the thickness (z/h) ratio, volume fraction of SWCNT.